Siberian Mathematical Journal

, Volume 47, Issue 4, pp 767–778 | Cite as

(H,R)-Lie coalgebras and (H,R)-Lie bialgebras

  • Liang-yun Zhang


Given an (H,R)-Lie coalgebra Γ, we construct (H,R T )-Lie coalgebra ΓT through a right cocycle T, where (H,R) is a triangular Hopf algebra, and prove that there exists a bijection between the set of (H,R)-Lie coalgebras and the set of ordinary Lie coalgebras. We also show that if (L, [, ], Δ, R) is an (H,R)-Lie bialgebra of an ordinary Lie algebra then (L T , [, ], ΔT, R T ) is an (H,R T )-Lie bialgebra of an ordinary Lie algebra.


(H,R)-Lie coalgebra triangular Hopf algebra right cocycle (H,R)-Lie bialgebra 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Michaelis W., “The Dual Poincaré-Birkhoff-Witt Theorem,” Adv. Math., 57, 93–162 (1985).zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Nichols W. D., “The structure of the dual Lie algebra of the Witt algebra,” J. Pure Appl. Algebra, 68, No. 3, 359–364 (1990).zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Drinfel’d V. G., “Quantum groups,” in: Proceedings of the International Congress of Mathematicians, Berkeley, California, 1987, pp. 798–820.Google Scholar
  4. 4.
    Taft E. J., “Witt and Virasoro algebras as Lie bialgebras,” J. Pure Appl. Algebra, 87, No. 3, 301–312 (1993).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Michaelis W., “A class of infinite-dimensional Lie bialgebras containing the Virasoro algebra, ” Adv. Math., 107, No. 3, 365–392 (1994).zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Bahturin Y., Fischman D., and Montgomery S., “Bicharacters, twistings, and Scheunert’s theorem for Hopf algebras,” J. Algebra, 236, No. 1, 246–276 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Montgomery S., Hopf Algebras and Their Actions on Rings (1993) (Cbms. Lecture Notes 82:1).Google Scholar
  8. 8.
    Michaelis W., “Lie coalgebras,” Adv. Math., 38, 1–54 (1980).zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Gurievich D. and Majid S., “Braided groups and Hopf algebras by twisting,” Pacific J. Math., 162, No. 1, 27–43 (1994).MathSciNetGoogle Scholar
  10. 10.
    Ballesteros A., Celeghini E., and Herranz F. J., “Quantum (1+1) extended Galilei algebras: from Lie bialgebras to quantum R-matrices and integrable systems,” J. Phys. A, 33, No. 17, 3431–3444 (2000).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Liang-yun Zhang
    • 1
  1. 1.Nanjing Agricultural University; Nanjing UniversityNanjingP. R. China

Personalised recommendations