Skip to main content
Log in

Propagation of perturbations in thin capillary film equations with nonlinear diffusion and convection

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the evolution of the support of an arbitrary strong generalized solution to the Cauchy problem for the thin film equation with nonlinear diffusion and convection. We find an upper bound exact (in a sense) for the propagation speed of the support of this solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernis F., “Viscous flows, fourth order nonlinear degenerate parabolic equations and singular elliptic problems,” in: Free Boundary Problems: Theory and Applications, Proceedings of the International Conference Held in Toledo, Spain, June 21–26, 1993. Longman Scientific & Technical, Harlow, 1995, pp. 40–56 (Pitman Res. Notes Math.; Ser. 323).

    Google Scholar 

  2. Bertozzi A. L., Munch A., and Shearer M., “Undercompressive shocks in thin film flows,” Phys. D., 134, 431–464 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertozzi A. L. and Pugh M., “The lubrication approximation for thin viscous films: the moving contact line with a porous media cutoff of the Van der Waals interactions,” Nonlinearity, 7, No. 6, 1535–1564 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertozzi A. L. and Pugh M., “Long-wave instabilities and saturation in thin film equations, ” Comm. Pure Appl. Math., 51, No. 6, 625–661 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  5. Elliot C. M. and Garcke H., “On the Cahn-Hilliard equation with degenerate mobility,” SIAM J. Math. Anal., 27, No. 2, 404–423 (1996).

    Article  MathSciNet  Google Scholar 

  6. Grün G., “Degenerate parabolic differential equations of fourth order and plasticity model with non-local hardening,” Z. Anal. Anwendungen., Bd 14, 541–574 (1995).

    MATH  MathSciNet  Google Scholar 

  7. Oron A., Davis S. H., and Bankoff G., “Long-scale evolution of thin liquid films,” Rev. Mod. Phys., 69, No. 3, 931–980 (1997).

    Article  Google Scholar 

  8. Bertozzi A. L., Munch A., Shearer M., and Zumbrun K., “Stability of compressive and undercompressive thin film traveling waves. The dynamics of thin fluid films,” European J. Appl. Math., 12, No. 3, 253–291 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  9. Bertozzi A. L. and Shearer M., “Existence of undercompressive traveling waves in thin film equations,” SIAM J. Math. Anal., 32, No. 1, 194–213 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  10. Bernis F. and Friedman A., “Higher order nonlinear degenerate parabolic equations,” J. Differential Equations, 83, No. 1, 179–206 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  11. Bernis F., “Finite speed of propagation and continuity of the interface for thin viscous flows, ” Adv. Differential Equations, 1, No. 3, 337–368 (1996).

    MATH  MathSciNet  Google Scholar 

  12. Kersner R. and Shishkov A., Existence of Free-Boundaries in Thin-Film Theory [Preprint IAMM NASU; No. 6], Donetsk (1996).

  13. Bernis F., “Finite speed of propagation for thin viscous flows when 2 ≤ n juvy 3, ” C. R. Acad. Sci. Paris Sér. I Math., 322, No. 12, 1169–1174 (1996).

    MATH  MathSciNet  Google Scholar 

  14. Hulshof J. and Shishkov A., “The thin film equation with 2 ≤ n juvy 3: Finite speed of propagation in terms of the L 1-norm,” Adv. Differential Equations, 3, No. 5, 625–642 (1998).

    MATH  MathSciNet  Google Scholar 

  15. Beretta E., Bertsch M., and Dal Passo R., “Nonnegative solutions of a fourth-order nonlinear degenerate parabolic equation,” Arch. Rational Mech. Anal., 129, No. 2, 175–200 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  16. Bertsch M., Dal Passo R., Garcke H., and Grün G., “The thin viscous flow equation in higher space dimension,” Adv. Differential Equations, 3, No. 3, 417–440 (1998).

    MATH  MathSciNet  Google Scholar 

  17. Grün G., “Droplet spreading under weak slippage: A basic result on finite speed of propagation,” SIAM J. Math. Anal., 34, No. 4, 992–1006 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  18. Dal Passo R., Giacomelli L., and Grün G., “A waiting time phenomenon for thin film equations,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 30, No. 2, 437–464 (2001).

    MATH  MathSciNet  Google Scholar 

  19. Taranets R. M., “Perturbation propagation in equations of thin capillary films with nonlinear absorption,” Trudy Inst. Prikl. Mat. i Mekh., 8, 181–194 (2003).

    MathSciNet  Google Scholar 

  20. Taranets R. M. and Shishkov A. E., “Effect of time delay of support propagation in equations of thin films,” Ukrainian Math. J., 55, No. 7, 1131–1152 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  21. Dal Passo R., Giacomelli L., and Shishkov A., “The thin film equation with nonlinear diffusion,” Comm. Partial Differential Equations, 26, No. 9&10, 1509–1557 (2001).

    MATH  MathSciNet  Google Scholar 

  22. Giacomelli L. and Shishkov A., Propagation of Support in One-Dimensional Convected Thin-Film Flow [Preprint / IAC “Mauro Picone”], Rome, Sept. (2003); to appear in Ind. Univ. Math. J.

  23. Taranets R. M. and Shishkov A. E., “On a flow thin-film equation with nonlinear convection in multidimensional domains,” Ukrain. Mat. Vestnik, 1, No. 3, 402–444 (2004).

    MathSciNet  Google Scholar 

  24. Oleinik O. A. and Radkevich E. V., “The method of introducing a parameter in the study of evolution equations,” Russian Math. Surveys, 33, No. 5, 7–76 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  25. Galaktionov V. A. and Shishkov A. E., “Saint-Venant’s principle in blow-up for higher-order quasilinear parabolic equations,” Proc. Roy. Soc. Edinburgh Sect. A, 133, No. 5, 1075–1119 (2003).

    MATH  MathSciNet  Google Scholar 

  26. Dal Passo R., Garcke H., and Grün G., “On a fourth-order degenerate parabolic equation: Global entropy estimates, existence and qualitative behavior of solutions,” SIAM J. Math. Anal., 29, No. 2, 321–342 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  27. Nirenberg L., “An extended interpolation inequality,” Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat., III. Ser. 20, 733–737 (1966).

  28. Bernis F., “Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equation with absorption,” Proc. Roy. Soc. Edinburgh Sect. A, 104, 1–19 (1986).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2006 Taranets R. M.

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 47, No. 4, pp. 914–931, July–August, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taranets, R.M. Propagation of perturbations in thin capillary film equations with nonlinear diffusion and convection. Sib Math J 47, 751–766 (2006). https://doi.org/10.1007/s11202-006-0086-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-006-0086-6

Keywords

Navigation