Advertisement

Siberian Mathematical Journal

, Volume 47, Issue 4, pp 601–620 | Cite as

Whitney-type theorems on extension of functions on Carnot groups

  • S. K. Vodop’yanov
  • I. M. Pupyshev
Article

Abstract

We generalize the classical Whitney theorem which describes the restrictions of functions of various smoothness to closed sets of a Carnot group. The main results of the article are announced in [1].

Keywords

Carnot group Whitney theorem extension of functions traces of functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vodop’yanov S. K. and Pupyshev I. M., “Whitney-type theorems on extension of functions on a Carnot group,” Dokl. Ross. Akad. Nauk, 406, No. 5, 586–590 (2006).MathSciNetGoogle Scholar
  2. 2.
    Folland G. B. and Stein E. M., Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton, N.J. (1982).zbMATHGoogle Scholar
  3. 3.
    Vodop’yanov S. K. and Greshnov A. V., “On extension of functions of bounded mean oscillation from domains in a space of homogeneous type with intrinsic metric,” Siberian Math. J., 36, No. 5, 873–901 (1995).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Whitney H., “Analytic extensions of differentiable functions defined in closed sets,” Trans. Amer. Math. Soc., 36, 63–89 (1934).zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Stein E. M., Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N.J.Google Scholar
  6. 6.
    Franchi B., Serapioni R., and Serra Cassano F., “Rectifiability and perimeter in the Heisenberg group,” Math. Ann., 321, No. 3, 479–531 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Fefferman C., “A sharp form of Whitney’s extension theorem,” Ann. Math. (2), 161, No. 1, 509–577 (2005).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. K. Vodop’yanov
    • 1
  • I. M. Pupyshev
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations