Siberian Mathematical Journal

, Volume 47, Issue 2, pp 383–390 | Cite as

The equation x2y2 = g in partially commutative groups

  • S. L. Shestakov


A partially commutative group is a group defined by generators and relations so that all defining relations are of the form: the commutator of two generators is equal to the identity element. We consider an algorithm for checking whether a given group element is a product of two squares. This generalizes a result of Wicks for free groups.


partially commutative groups equations in groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shestakov S. L. “The equation [x y] = g in partially commutative groups” Siberian Math. J. 46, No. 2 364–372 (2005).CrossRefMathSciNetGoogle Scholar
  2. 2.
    Cartier P. and Foata D., Problémes Combinatoires de Commutation et de Réarrangements, Springer-Verlag, Berlin; Heidelberg; New York (1969). (Lecture Notes in Math.; 85.)Google Scholar
  3. 3.
    Servatius H., “Automorphisms of graph groups,” J. Algebra, 126, No. 1, 34–60 (1989).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Baudisch A., “Subgroups of semifree groups,” Acta Math. Acad. Sci. Hungar., 38, No. 1–4, 19–28 (1981).MathSciNetGoogle Scholar
  5. 5.
    Duchamp G. and Krob D., “The lower central series of the free partially commutative group,” Semigroup Forum, 45, No. 3, 385–394 (1992).MathSciNetGoogle Scholar
  6. 6.
    Mikhailova K. A., “The membership problem for direct products of groups,” Dokl. Akad. Nauk SSSR, 119, 1103–1105 (1958).zbMATHMathSciNetGoogle Scholar
  7. 7.
    Servatius H., Droms C., and Servatius B., “Surface subgroups of graph groups,” Proc. Amer. Math. Soc., 106, No. 3, 573–578 (1989).MathSciNetGoogle Scholar
  8. 8.
    Wicks M. J., “Commutators in free products,” J. London Math. Soc., 37, 433–444 (1962).zbMATHMathSciNetGoogle Scholar
  9. 9.
    Vdovina A., “Constructing orientable Wicks forms and estimation of their numbers,” Comm. Algebra, 23, No. 9, 3205–3222 (1995).zbMATHMathSciNetGoogle Scholar
  10. 10.
    Lyndon R. C. and Schupp P. E., Combinatorial Group Theory [Russian translation], Mir, Moscow (1980).Google Scholar
  11. 11.
    Wicks M. J., “The equation x 2 y 2 = g over free products,” Proc. Cong. Singapore Nat. Acad. Sci, 238–248 (1971).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • S. L. Shestakov
    • 1
  1. 1.Vologda State Pedagogical UniversityVologdaRussia

Personalised recommendations