Advertisement

Siberian Mathematical Journal

, Volume 47, Issue 2, pp 376–382 | Cite as

Multidimensional exact solutions to a quasilinear parabolic equation with anisotropic heat conductivity

  • E. I. Semenov
Article

Abstract

We prove invariance of a quasilinear parabolic equation with anisotropic heat conductivity in the three-dimensional coordinate space under some equivalence transformations and present some explicit formulas for these transformations. We consider nontrivial reductions of the equation to similar equations of less spatial dimension. Using these results, we construct new exact multidimensional solutions to the equation which depend on arbitrary harmonic functions.

Keywords

quasilinear parabolic heat equation Liouville equation multidimensional exact solution equivalence transformation anisotropy conjugate harmonic function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dorodnitsyn V. A., Knyazeva I. V., and Svirshchevskii S. R., “Group properties of the heat equation with a source in two-dimensional and three-dimensional cases,” Differentsial’nye Uravneniya, 19, No. 7, 1215–1223 (1983).MathSciNetGoogle Scholar
  2. 2.
    Galaktionov V. A., Dorodnitsyn V. A., Elenin G. G., et al., “A quasilinear heat equation with a source: blow-up, localization, symmetry, exact solutions, asymptotics, and structures,” in: Contemporary Problems of Mathematics. Modern Achievements [in Russian] VINITI, Moscow, 1986, 28, pp. 95–205 (Itogi Nauki i Tekhniki).Google Scholar
  3. 3.
    Semenov È. I., “Properties of the fast diffusion equation and its multidimensional exact solutions,” Siberian Math. J., 44, No. 4, 680–685 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Ibragimov N. Kh., Transformation Groups in Mathematical Physics [in Russian], Nauka, Moscow (1983).Google Scholar
  5. 5.
    Pukhnachov V. V., “Equivalence transformations and hidden symmetry of evolution equations,” Dokl. Akad. Nauk SSSR, 294, No. 3, 535–538 (1987).MathSciNetGoogle Scholar
  6. 6.
    Polyanin A. D. and Zaizev V. F., Handbook of Exact Solutions for Ordinary Differential Equations, CRC Press, Boca Raton, FL (2003).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. I. Semenov
    • 1
  1. 1.Institute of System Dynamics and Control TheoryIrkutskRussia

Personalised recommendations