Skip to main content
Log in

The genuinely nonlinear Graetz—Nusselt ultraparabolic equation

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study a second-order quasilinear ultraparabolic equation whose matrix of the coefficients of the second derivatives is nonnegative, depends on the time and spatial variables, and can change rank in the case when it is diagonal and the coefficients of the first derivatives can be discontinuous. We prove that if the equation is a priori known to enjoy the maximum principle and satisfies the additional “genuine nonlinearity” condition then the Cauchy problem with arbitrary bounded initial data has at least one entropy solution and every uniformly bounded set of entropy solutions is relatively compact in L 1loc . The proofs are based on introduction and systematic study of the kinetic formulation of the equation in question and application of the modification of the Tartar H-measures proposed by E. Yu. Panov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ladyzhenskaya O. A., Solonnikov V. A., and Ural’tseva N. N., Linear and Quasilinear Equations of Parabolic Type [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  2. Lanconelli E., Pascucci A., and Polidoro S., “Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance,” in: Birman M. Sh. (ed.) et al. Nonlinear Problems in Mathematical Physics and Related Topics. II. In honour of Professor O. A. Ladyzhenskaya, New York; Novosibirsk, Kluwer Academic Publishers; T. Rozhkovskaya. Int. Math. Ser., 2002, Vol. 2, pp. 243–265.

    Google Scholar 

  3. Levich V. G., Physicochemical Hydrodynamics [in Russian], Fizmatgiz, Moscow (1959).

    Google Scholar 

  4. Graetz L., “Uber die Wärmeleitungsfähigkeit von flüssigkeiten. P. 2,” Ann. Physik Chem.,, No. 25, 337–357 (1885).

  5. Nusselt W., “Die abhängigkeit der wärmeübergangszahl von der rohrlänge,” Z. Ver. Deut. Ing., Bd 54, 1154–1158 (1910).

    Google Scholar 

  6. Lax P. D., “Hyperbolic systems of conservation laws. II,” Comm. Pure Appl. Math., 10, 537–566 (1957).

    MATH  MathSciNet  Google Scholar 

  7. Tartar L., “The compensated compactness method applied to systems of conservation laws,” in: Systems of Nonlinear Partial Differential Equations, Reidel Publ. Comp., Dordrecht, Boston, and Massachusetts, 1983, pp. 263–285 (NATO Adv. Sci. Inst. Ser. C., 111).

    Google Scholar 

  8. Lions P. L., Perthame B., and Tadmor E., “A kinetic formulation of multidimensional conservation laws and related equations,” J. Amer. Math. Soc., 7, 169–191 (1994).

    MathSciNet  Google Scholar 

  9. Panov E. Yu., “On a sequence of measure-valued solutions to a first-order quasilinear equation,” Mat. Sb., 185, No. 1, 87–106 (1994).

    MATH  Google Scholar 

  10. Kruzhkov S. I., “First order quasilinear equations in several independent variables,” Mat. Sb., 81, No. 2, 228–255 (1970).

    MATH  MathSciNet  Google Scholar 

  11. Chen G.-Q. and Perthame B., “Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations,” Ann. Inst. H. Poincaré Anal. Non Linéaire, 20, No. 4, 645–668 (2003).

    Article  MathSciNet  Google Scholar 

  12. Panov E. Yu., “On kinetic interpretation of measure-valued solutions to a first-order quasilinear equation,” Fundam. Prikl. Mat., 4, No. 1, 317–332 (1998).

    MATH  MathSciNet  Google Scholar 

  13. Perthame B., Kinetic Formulations of Conservation Laws, Oxford Univ. Press, Oxford (2002).

    Google Scholar 

  14. Tartar L., “H-measures, a new approach for studying homogenisation oscillations and concentration effects in partial differential equations,” Proc. Roy. Soc. Edinburgh Sect. A, 115, No. 3/4, 193–230 (1990).

    MATH  MathSciNet  Google Scholar 

  15. Gerárd P., “Microlocal defect measures,” Comm. Partial Differential Equations, 16, No. 11, 1761–1794 (1991).

    MATH  MathSciNet  Google Scholar 

  16. Malek J., Nečas J., Rokyta M., and Ružička M., Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman and Hall, London (1996).

    Google Scholar 

  17. Panov E. Yu., “Property of strong precompactness for bounded sets of measure-valued solutions to a first-order quasilinear equation,” Mat. Sb., 190, No. 3, 109–128 (1999).

    MATH  MathSciNet  Google Scholar 

  18. Sazhenkov S. A., “A Cauchy problem for the Tartar equation,” Proc. Roy. Soc. Edinburgh Sect. A, 132, No. 2, 395–418 (2002).

    MATH  MathSciNet  Google Scholar 

  19. Bourbaki N., Integration: Measures. Integration of Measures [Russian translation], Nauka, Moscow (1965).

    Google Scholar 

  20. Stein E. M., Singular Integrals and Differentiability Properties of Functions [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  21. DiPerna R. J. and Lions P. L., “Ordinary differential equations, transport theory and Sobolev spaces,” Invent. Math., 98, No. 3, 511–547 (1989).

    Article  MathSciNet  Google Scholar 

  22. Kato T., Perturbation Theory for Linear Operators [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  23. Adams D. R. and Hedberg L. I., Function Spaces and Potential Theory, Springer-Verlag, New York, Berlin, Heidelberg, etc. (1996) (Compr. Studies in Math.; 314).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2006 Sazhenkov S. A.

The author was supported by the Russian Foundation for Basic Research (Grant 03-01-00829) and the Program “Development of the Scientific Potential of Higher School” of the Ministry for Education of the Russian Federation (Grant 8247).

__________

Translated from Sibirski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Matematicheski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Zhurnal, Vol. 47, No. 2, pp. 431–454, March–April, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sazhenkov, S.A. The genuinely nonlinear Graetz—Nusselt ultraparabolic equation. Sib Math J 47, 355–375 (2006). https://doi.org/10.1007/s11202-006-0048-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-006-0048-z

Keywords

Navigation