Advertisement

Siberian Mathematical Journal

, Volume 47, Issue 2, pp 307–314 | Cite as

Positively conditional pseudovarieties and implicit operations on them

  • A. G. Pinus
Article

Abstract

We study the syntactic descriptions of implicit operations on positively conditional pseudovarieties of finite algebras and the questions of axiomatizability of positively conditional pseudovarieties.

Keywords

positively conditional pseudovarieties positively conditional pseudoidentities positively conditional terms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eilenberg S. and Schützenbérger M. P., “On pseudovarieties,” Adv. Math., 19, No. 3, 413–418 (1976).CrossRefGoogle Scholar
  2. 2.
    Reiterman J., “The Birkhoff theorem for finite algebras,” Algebra Univ., 14, No. 1, 1–10 (1982).zbMATHMathSciNetGoogle Scholar
  3. 3.
    Higgins P. M., “An algebraic proof that pseudovarieties are defined by pseudoidentities,” Algebra Univ., 27, 597–599 (1990).zbMATHMathSciNetGoogle Scholar
  4. 4.
    Ash C. J., “Pseudovarieties, generalized varieties and similarly described classes,” J. Algebra, 92, 104–115 (1985).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Pinus A. G., “Positive conditional varieties,” in: Algebra and Model Theory. 3 [in Russian], Novosibirsk State Technical Univ., Novosibirsk, 2001, pp. 99–106.Google Scholar
  6. 6.
    Pinus A. G., “On the implicit conditional operations defined on pseudouniversal classes,” Fund. Prikl. Mat., 10, No. 4, 171–182 (2004).zbMATHMathSciNetGoogle Scholar
  7. 7.
    Pinus A. G., “Inner homomorphisms and positively conditional terms,” Algebra and Logic, 40, No. 2, 87–95 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Pinus A. G., “Calculus of conditional identities and conditionally rational equivalence,” Algebra and Logic, 37, No. 4, 245–259 (1998).zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. G. Pinus
    • 1
  1. 1.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations