Siberian Mathematical Journal

, Volume 47, Issue 2, pp 301–306 | Cite as

On solving general algebraic equations by integrals of elementary functions

  • E. N. Mikhalkin


We obtain an integral formula for a solution to a general algebraic equation. In this formula the integrand is an elementary function and integration is carried out over an interval. The advantage of this formula over the well-known Mellin formula is that the integral has a broader convergence domain. This circumstance makes it possible to describe the monodromy of a solution for trinomial equations.


algebraic equation integral representation hypergeometric function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mellin H. J., “Résolution de l’equation algébrique générale á l’aide de la fonction gamma,” C. R. Acad. Sci. Paris Sér. I Math., 172, 658–661 (1921).zbMATHGoogle Scholar
  2. 2.
    Semusheva A. Yu. and Tsikh A. K., “Continuation of the Mellin studies about solutions of algebraic equations,” in: Complex Analysis and Differential Operators (On the 150th Anniversary of S. V. Kovalevskaya) [in Russian], Krasnoyarsk Univ., Krasnoyarsk, 2000, pp. 134–146.Google Scholar
  3. 3.
    Passare M. and Tsikh A., “Algebraic equations and hypergeometric series,” in: The Legacy of Niels Henrik Abel, Springer-Verlag, Berlin; Heidelberg, 2004, pp. 653–672.Google Scholar
  4. 4.
    Zhdanov O. N. and Tsikh A. K., “Studying the multiple Mellin-Barnes integrals by means of multidimensional residues,” Siberian Math. J., 39, No. 2, 245–260 (1998).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. N. Mikhalkin
    • 1
  1. 1.Krasnoyarsk State UniversityKrasnoyarskRussia

Personalised recommendations