Advertisement

Siberian Mathematical Journal

, Volume 47, Issue 2, pp 291–297 | Cite as

Complexity of some natural problems on the class of computable I-algebras

  • N. T. Kogabaev
Article
  • 19 Downloads

Abstract

We study computable Boolean algebras with distinguished ideals (I-algebras for short). We prove that the isomorphism problem for computable I-algebras is Σ 1 1 -complete and show that the computable isomorphism problem and the computable categoricity problem for computable I-algebras are Σ 3 0 -complete.

Keywords

computable Boolean algebra with distinguished ideals computable isomorphism computably categorical structure arithmetical complexity analytical complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kogabaev N. T., “Universal numbering for constructive I-algebras,” Algebra and Logic, 40, No. 5, 315–326 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Goncharov S. S. and Ershov Yu. L., Constructive Models, Consultants Bureau, New York, NY (2000).Google Scholar
  3. 3.
    Ershov Yu. L. and Goncharov S. S., “Elementary theories and their constructive models,” in: Handbook of Recursive Mathematics. Vol. 1, North-Holland, Amsterdam (1998) (Stud. Logic Found. Math.; V. 138).Google Scholar
  4. 4.
    Goncharov S. S., Countable Boolean Algebras and Decidability, Plenum, New York, NY (1997).Google Scholar
  5. 5.
    Goncharov S. S. and Knight J. F., “Computable structure and non-structure theorems,” Algebra and Logic, 41, No. 6, 351–373 (2002).CrossRefMathSciNetGoogle Scholar
  6. 6.
    Alaev P. E., “Autostable I-algebras,” Algebra and Logic, 43, No. 5, 285–306 (2004).CrossRefMathSciNetGoogle Scholar
  7. 7.
    Kogabaev N. T., “Autostability of Boolean algebras with distinguished ideal,” Siberian Math. J., 39, No. 5, 927–935 (1998).zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • N. T. Kogabaev
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations