Siberian Mathematical Journal

, Volume 47, Issue 2, pp 209–238 | Cite as

Metrics and tangent cones of uniformly regular Carnot—Carathéodory spaces

  • A. V. Greshnov


Given a uniformly regular Carnot—Carathéodory space, we prove equivalence of the quasimetrics generated by various bases of vector fields which agree with filtration of the space. We prove a theorem on a nilpotent tangent cone for a uniformly regular Carnot—Carathéodory space furnished with quasimetrics. As a consequence, we obtain a theorem on isomorphism of nilpotent tangent cones defined at a common distinguished point.


Carnot—Carathéodory space nilpotent group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mitchell J., “On Carnot—Carathéodory metrics,” J. Differential Geometry, 21, 35–45 (1985).zbMATHGoogle Scholar
  2. 2.
    Petersen P. V., “Gromov—Hausdorff convergence of metric spaces,” in: Differential Geometry. Part 3: Riemannian Geometry, Amer. Math. Soc., Providence, RI, 1993, pp. 489–504 (Proc. Sympos. Pure Math.; V. 54, Pt. 3).zbMATHGoogle Scholar
  3. 3.
    Gromov M., “Carnot—Carathéodory spaces seen from within,” in: Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, pp. 79–323.Google Scholar
  4. 4.
    Belläiche A., “The tangent space in sub-Riemannian geometry,” in: Sub-Riemannian Geometry, Birkhäuser, Basel, 1996, pp. 1–78.Google Scholar
  5. 5.
    Vodop’yanov S. K., “Sobolev classes and quasiconformal mappings on Carnot-Carathéodory spaces,” in: Geometry, Topology and Physics: Proc. First Brazil-USA Workshop held in Campinas, Brazil, June 30–July 7, 1996, Walter de Gruyter & Co, Berlin; New York, 1997, pp. 301–316.Google Scholar
  6. 6.
    Vodop-yanov S. K., “Monotone functions and quasiconformal mappings on Carnot groups,” Siberian Math. J., 37, No. 6, 1113–1136 (1996).MathSciNetGoogle Scholar
  7. 7.
    Montgomery R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Amer. Math. Soc., Providence, RI (2002).Google Scholar
  8. 8.
    Capogna L. and Garofalo N., “Boundary behavior of non-negative solutions of subelliptic equations in NTA-domains for Carnot—Carathéodory metrics,” Fourier Anal. Appl., 4, No. 4, 403–432 (1998).MathSciNetGoogle Scholar
  9. 9.
    Nagel A., Stein E. M., and Wainger S., “Balls and metrics defined by vector fields. I: Basic properties,” Acta Math., 155, No. 1–2, 103–147 (1985).MathSciNetGoogle Scholar
  10. 10.
    Stein E. M., “Some geometrical concepts arising in harmonic analysis,” Geom. Funct. Anal. Special Volume, pp. 434–453 (2000).Google Scholar
  11. 11.
    Gromov M., “Groups of polynomial growth and expanding maps,” Inst. Hautes Études Sci. Publ. Math., 53, 53–73 (1981).zbMATHMathSciNetGoogle Scholar
  12. 12.
    Gromov M., Structures Métriques pour les Variétés Riemanniennes, CEDIC, Paris (1981).Google Scholar
  13. 13.
    Pansu P., “étriques de Carnot—Carathéodory et quasiisométries des espaces sym’etriques de rang un,” Ann. Math. (2), 129, No. 1, 1–60 (1989).zbMATHMathSciNetGoogle Scholar
  14. 14.
    Koranyi A. and Reimann H. M., “Foundations for the theory of quasiconformal mappings on the Heisenberg group,” Adv. Math., 111, 1–87 (1995).CrossRefMathSciNetGoogle Scholar
  15. 15.
    Vodop’yanov S. K., “P-Differentiability on Carnot groups in different topologies and related topics,” in: Studies on Analysis and Geometry, Izdat. Inst. Mat., Novosibirsk, 2000, pp. 603–670.Google Scholar
  16. 16.
    Margulis G. A. and Mostow G. D., “The differential of a quasi-conformal mapping of a Carnot-Carathéodory space,” Geom. Funct. Anal., 5, No. 2, 402–433 (1995).CrossRefMathSciNetGoogle Scholar
  17. 17.
    Margulis G. A. and Mostow G. D., “Some remarks on the definition of tangent cones in a Carnot-Carathéodory space,” J. Anal. Math., 80, 299–317 (2000).MathSciNetGoogle Scholar
  18. 18.
    Vodop’yanov S. K. and Greshnov A. V., “On differentiability of mappings of Carnot-Carathéodory spaces,” Dokl. Ross. Akad. Nauk, 389, No. 5, 592–596 (2003).MathSciNetGoogle Scholar
  19. 19.
    Metivier G., “Fonction spectrale et valeurs proposes d’une classe d’operateurs,” Comm. Partial Differential Equations, 1, 479–519 (1976).MathSciNetGoogle Scholar
  20. 20.
    Folland G. B. and Stein I. M., Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton (1982) (Math. Notes, 28).Google Scholar
  21. 21.
    Berestovskii V. N., Homogeneous Spaces with Intrinsic Metric [in Russian], Dis. Dokt. Fiz.-Mat. Nauk, Inst. Mat. (Novosibirsk), Novosibirsk (1988).Google Scholar
  22. 22.
    Rothchild L. P. and Stein E. S., “Hypoelliptic differential operators and nilpotent groups,” Acta Math., 137, 247–320 (1976).MathSciNetGoogle Scholar
  23. 23.
    Postnikov M. M., Differential Geometry [in Russian], Nauka, Moscow (1988).Google Scholar
  24. 24.
    Helgason S., Differential Geometry and Symmetric Spaces [Russian translation], Mir, Moscow (1964).Google Scholar
  25. 25.
    Dynkin E. B., “Normed Lie algebras and analytic groups,” Uspekhi Mat. Nauk, 5, No. 1, 135–186 (1950).zbMATHMathSciNetGoogle Scholar
  26. 26.
    Postnikov M. M., Lie Groups and Lie Algebras [in Russian], Nauka, Moscow (1982).Google Scholar
  27. 27.
    Hörmander L., “Hypoelliptic second order differential equations,” Acta Math., 119, 147–171 (1967).zbMATHMathSciNetGoogle Scholar
  28. 28.
    Pontryagin L. S., Ordinary Differential Equations [in Russian], Fizmatgiz, Moscow (1961).Google Scholar
  29. 29.
    Stein E. M., Harmonic Analysis: Real-Variables Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton (1993).Google Scholar
  30. 30.
    Dubrovin B. A., Novikov S. P., and Fomenko A. T., Modern Geometry [in Russian], Nauka, Moscow (1984).Google Scholar
  31. 31.
    Pontryagin L. S., Continuous Groups [in Russian], Mir, Moscow (1973).Google Scholar
  32. 32.
    Vodop’yanov S. K. and Greshnov A. V., “Differentiability of mappings in the geometry of Carnot-Carathéodory spaces” (to appear).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • A. V. Greshnov
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations