Skip to main content
Log in

A. D. Alexandrov's Problem for CAT(0)-Spaces

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We solve the well-known problem by A. D. Alexandrov for nonpositively curved spaces. Let X be a geodesically complete locally compact space nonpositively curved in the sense of Alexandrov and connected at infinity. The main theorem reads as follows: Each bijection f : XX such that f and the inverse f −1 of f preserve distance 1 is an isometry of X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestovskii V. N., “Isometries in Aleksandrov spaces of curvature bounded above,” Illinois J. Math., 46, No.2, 645–656 (2002).

    MATH  MathSciNet  Google Scholar 

  2. Andreev P. D., “Recovery of a metric of the CAT(0)-space by a diagonal tube,” Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 299, 5–29 (2003).

    Google Scholar 

  3. Berestovskii V. N., “Busemann spaces of curvature bounded above in the sense of Alexandrov,” Algebra i Analiz, 46, No.2, 645–656 (2002).

    MATH  MathSciNet  Google Scholar 

  4. Beckman F. S. and Quarles D. A. Jr., “On isometries of Euclidean spaces,” Proc. Amer. Math. Soc., 4, 810–815 (1953).

    MathSciNet  Google Scholar 

  5. Alexandrov A. D., “On congruence-preserving mappings,” Dokl. Akad. Nauk SSSR, 211, No.6, 1257–1260 (1973).

    MathSciNet  Google Scholar 

  6. Kuz'minykh A. V., “Mappings preserving unit distances,” Sibirsk. Mat. Zh., 29, No.3, 597–602 (1979).

    MathSciNet  Google Scholar 

  7. Tyszka A., “Discrete versions of the Beckman-Quarles theorem,” Aequationes Math., 59, 124–133 (2000).

    MATH  MathSciNet  Google Scholar 

  8. Tyszka A., The Beckman-Quarles Theorem for Continuous Mappings from ℂn to ℂn [Preprint / ArXiv:math.MG /0406093] (2004).

  9. Alexandrov A. D., Berestovskii V. N., and Nikolaev I. G., “Generalized Riemannian spaces,” Uspekhi Mat. Nauk, 41, No.3, 3–44 (1986).

    MathSciNet  Google Scholar 

  10. Ballmann W., Lectures on Spaces of Nonpositive Curvature, Birkhauser, Basel; Boston; Berlin (1995).

    Google Scholar 

  11. Bridson M. and Haefliger A., Metric Spaces of Nonpositive Curvature, Springer-Verlag, Berlin (1999) (Grundlehren der Math. Wiss.; 319).

    Google Scholar 

  12. Buyalo S. V., Lectures on Spaces of Curvature Bounded Above [Preprint], Univ. of Illinois, Urbana-Champaign (1994).

    Google Scholar 

  13. Alexander S. B. and Bishop R. L., “The Hadamard-Cartan theorem in locally convex spaces,” Enseign. Math., 36, 309–320 (1990).

    MathSciNet  Google Scholar 

  14. Kapovich I. and Benakli N., “Boundaries of hyperbolic groups,” Contemp. Math., 296, 39–94 (2002).

    MathSciNet  Google Scholar 

  15. Webster C. and Winchester A., Boundaries of Hyperbolic Metric Spaces [Preprint / ArXiv: math.MG / 0310101] (2003).

  16. Ballmann W., Gromov M., and Schroeder V., Manifolds of Nonpositive Curvature, Birkhauser, Boston; Basel; Stuttgart (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author was supported by the Russian Foundation for Basic Research (Grant 04-01-00315).

__________

Translated from Sibirskii Matematicheskii Zhurnal, Vol. 47, No. 1, pp. 3–24, January–February, 2006.

Original Russian Text Copyright © 2006 Andreev P. D.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreev, P.D. A. D. Alexandrov's Problem for CAT(0)-Spaces. Sib Math J 47, 1–17 (2006). https://doi.org/10.1007/s11202-006-0001-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-006-0001-1

Keywords

Navigation