Siberian Mathematical Journal

, Volume 46, Issue 2, pp 364–372 | Cite as

The equation [x, y] = g in partially commutative groups

  • S. L. Shestakov


A partially commutative group is a group defined by generators and relations so that all defining relations are of the form: the commutators of some pairs of generators equal the identity element. We consider an algorithm for checking whether a given element of the group is a commutator, generalizing Wicks’s theorem for free groups.


equations in groups partially commutative groups 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wicks M. J., “Commutators in free products,” J. London Math. Soc., No. 37, 433–444 (1962).Google Scholar
  2. 2.
    Vdovina A., “Constructing orientable Wicks forms and estimation of their numbers,” Comm. Algebra, No. 23(9), 3205–3222 (1995).Google Scholar
  3. 3.
    Wicks M. J., “The equation x 2 y 2 = g over free products,” Proc. Cong. Singapore Nat. Acad. Sci, 238–248 (1971).Google Scholar
  4. 4.
    Wicks M. J., “A general solution of binary homogeneous equations over free groups,” Pacific J. Math., 41, 543–561 (1972).Google Scholar
  5. 5.
    Makanin G. S., “Equations in a free group,” Izv. Akad. Nauk SSSR Ser. Mat., 46, No.6, 1199–1273 (1982).Google Scholar
  6. 6.
    Razborov A. A., “Systems of equations in a free group,” Izv. Akad. Nauk SSSR Ser. Mat., 48, No.4, 779–832 (1982).Google Scholar
  7. 7.
    Guba V. and Sapir M., Diagram Groups, Amer. Math. Soc., Providence RI (1997). (Mem. Amer. Math. Soc.; 620.)Google Scholar
  8. 8.
    Guba V. and Sapir M., “Diagram groups are totally orderable,” Scholar
  9. 9.
    Servatius H., “Automorphisms of graph groups,” J. Algebra, No. 126, 34–60 (1989).Google Scholar
  10. 10.
    Cartier P. and Foata D., Problémes Combinatoires de Commutation et de Réarrangements, Springer-Verlag, Berlin; Heidelberg; New York (1969). (Lecture Notes in Math.; 85.)Google Scholar
  11. 11.
    Lyndon R. C. and Schupp P. E., Combinatorial Group Theory [Russian translation], Mir, Moscow (1980).Google Scholar
  12. 12.
    Ol’shanski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) A. Yu., The Geometry of Defining Relations in Groups [in Russian], Nauka, Moscow (1989).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. L. Shestakov
    • 1
  1. 1.Vologda State Pedagogical UniversityVologda

Personalised recommendations