Advertisement

Siberian Mathematical Journal

, Volume 46, Issue 2, pp 305–307 | Cite as

On differences of Riesz homomorphisms

  • S. S. Kutateladze
Article

Abstract

An order bounded functional on a Riesz space is a difference of Riesz homomorphisms if and only if the kernel of this functional is a Riesz subspace of the ambient Riesz space. An operator version of this fact is given.

Keywords

Riesz homomorphism Stone theorem Boolean valued analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kutateladze S. S., Fundamentals of Functional Analysis, Kluwer Academic Publishers, Dordrecht (1996).Google Scholar
  2. 2.
    Kusraev A. G., Dominated Operators, Kluwer Academic Publishers, Dordrecht (2000).Google Scholar
  3. 3.
    Kutateladze S. S. (ed.), Vector Lattices and Integral Operators, Kluwer Academic Publishers, Dordrecht (1996).Google Scholar
  4. 4.
    Kusraev A. G. and Kutateladze S. S., Boolean Valued Analysis, Kluwer Academic Publishers, Dordrecht (1999).Google Scholar
  5. 5.
    Kusraev A. G. and Kutateladze S. S., Subdifferentials: Theory and Applications, Kluwer Academic Publishers, Dordrecht (1995).Google Scholar
  6. 6.
    Kutateladze S. S., “Choquet boundaries in K-spaces,” Russ. Math. Surveys, 30, No.4, 115–155 (1975).Google Scholar
  7. 7.
    Akilov G. P. and Kutateladze S. S., Ordered Vector Spaces [in Russian], Nauka, Novosibirsk (1978).Google Scholar
  8. 8.
    Meyer M., “Le stabilisateur d’un espace vectoriel réticulé,” C. R. Acad. Sci. Paris Sér. A, 283, 249–250 (1976).Google Scholar
  9. 9.
    Abramovich Y. A., Arenson E. L., and Kitover A. K. Banach C(K)-Modules and Operators Preserving Disjointness [Preprint, No. 05808-91], Math. Sci. Res. Inst., Berkeley (1991); John Wiley & Sons, Inc., New York (1992).Google Scholar
  10. 10.
    Schaefer H. H., Banach Lattices and Positive Operators, Springer-Verlag, Berlin; Heidelberg; New York (1974).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. S. Kutateladze
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirsk

Personalised recommendations