Advertisement

Siberian Mathematical Journal

, Volume 46, Issue 2, pp 226–232 | Cite as

Symmetries of factor systems

  • Yu. Yu. Bagderina
Article
  • 20 Downloads

Abstract

We consider the problem of extra group properties of the factor system that arises in constructing an invariant solution of a PDE system. We find a sufficient condition under which the factor system has no symmetries but the factor of the normalizer of the subalgebra.

Keywords

invariant solutions of PDEs factor system factor algebra symmetries of determining equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ovsyannikov L. V., Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).Google Scholar
  2. 2.
    Ovsyannikov L. V., “On hierarchies of invariant submodels of differential equations,” Dokl. Ross. Akad. Nauk, 361, No.6, 740–742 (1998).Google Scholar
  3. 3.
    Kapitanski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) L. V., “Group analysis of the Navier-Stokes and Euler equations with rotational symmetry and some new exact solutions of their equations,” Dokl. Akad. Nauk SSSR, 243, No.4, 901–904 (1978).Google Scholar
  4. 4.
    Andreev V. K., Kaptsov O. V., Pukhnachov V. V., and Rodionov A. A., Applications of Group-Theoretical Methods in Hydrodynamics [in Russian], Nauka, Novosibirsk (1994).Google Scholar
  5. 5.
    Meleshko S. V., “Group classification of the equations of two-dimensional motions of a gas,” Prikl. Mat. Mekh., 58, No.4, 56–62 (1994).Google Scholar
  6. 6.
    Mustaev A. F. and Khabirov S. V., “Spiral motions of a gas which are invariant with respect to uniform motion of the frame of reference,” Prikl. Mat. Mekh., 65, No.5, 854–861 (2001).Google Scholar
  7. 7.
    Mamontov E. V., “Group properties of 2-submodels for the E class of gas dynamics equations,” Prikl. Mekh. Teor. Fiz., 42, No.1, 33–39 (2001).Google Scholar
  8. 8.
    Ovsyannikov L. V., “A group property for determining equations,” Dinamika Sploshn. Sredy (Novosibirsk), No. 7, 5–11 (1971).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Yu. Yu. Bagderina
    • 1
  1. 1.Institute of Mathematics with Computing CenterUfa

Personalised recommendations