Advertisement

Siberian Mathematical Journal

, Volume 46, Issue 2, pp 205–225 | Cite as

Extrapolation functors on a family of scales generated by the real interpolation method

  • S. V. Astashkin
Article

Abstract

A new class of extrapolation functors is defined on a family of scales generated by the real interpolation method. We prove extrapolation relations for the K- and J-functionals corresponding to some natural pairs of limit spaces which make it possible to describe the values of these functors. We can consider these relations as new assertions similar to the classical Yano theorem on estimates for the norms of operators in interpolation scales of spaces.

Keywords

operator extrapolation extrapolation functor rearrangement invariant space operator interpolation real interpolation method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yano S., “An extrapolation theorem,” J. Math. Soc. Japan, 3, 296–305 (1951).Google Scholar
  2. 2.
    Zygmund A., Trigonometric Series [Russian translation], Mir, Moscow (1965).Google Scholar
  3. 3.
    Jawerth B. and Milman M., Extrapolation Spaces with Applications, Amer. Math. Soc., Providence RI (1991). (Mem. Amer. Math. Soc.; 440.)Google Scholar
  4. 4.
    Jawerth B. and Milman M., “New results and applications of extrapolation theory,” Israel Math. Conf. Proc., 5, 81–105 (1992).Google Scholar
  5. 5.
    Milman M., Extrapolation and Optimal Decompositions with Applications to Analysis, Springer-Verlag, Berlin (1994). (Lecture Notes in Math.; 1580.)Google Scholar
  6. 6.
    Astashkin S. V., “On extrapolation properties of the scale of L p-spaces,” Mat. Sb., 194, No.6, 23–42 (2003).Google Scholar
  7. 7.
    Astashkin S. V., “Some new extrapolation estimates for the scale of L p-spaces,” Funktsional. Anal. i Prilozhen., 37, No.3, 73–77 (2003).Google Scholar
  8. 8.
    Bergh J. and Löfström J., Interpolation Spaces. An Introduction [Russian translation], Mir, Moscow (1980).Google Scholar
  9. 9.
    Brudnyi Yu. A. and Krugliak N. Ya., Interpolation Functors and Interpolation Spaces, North-Holland, Amsterdam (1991).Google Scholar
  10. 10.
    Krein S. G., Petunin Yu. I., and Semenov E. M., Interpolation of Linear Operators [in Russian], Nauka, Moscow (1978).Google Scholar
  11. 11.
    Lindenstrauss J. and Tzafriri L., Classical Banach Spaces. 2. Function Spaces, Springer-Verlag, Berlin (1979).Google Scholar
  12. 12.
    Lorentz G. G., “Relations between function spaces,” Proc. Amer. Math. Soc., 12, 127–132 (1961).Google Scholar
  13. 13.
    Rutitskii Ya. B., “On some classes of measurable functions,” Uspekhi Mat. Nauk, 20, No.4, 205–208 (1965).Google Scholar
  14. 14.
    Bennett C. and Rudnick K., “On Lorentz-Zygmund spaces,” Dissertationes Math., 175, 5–67 (1980).Google Scholar
  15. 15.
    Milman M., “A note on extrapolation theory,” J. Math. Anal. Appl., 282, 26–47 (2003).Google Scholar
  16. 16.
    Astashkin S. V., “A space of multipliers generated by Rademacher system,” Mat. Zametki, 75, No.2, 173–181 (2004).Google Scholar
  17. 17.
    Cwikel M. and Nilsson P., “Interpolation of Marcinkiewicz spaces,” Math. Scand., 56, 29–42 (1985).Google Scholar
  18. 18.
    Bennett C., “Banach function spaces and interpolation methods,” J. Funct. Anal., 17, 409–440 (1974).Google Scholar
  19. 19.
    Ovchinnikov V. I., “The method of orbits in interpolation theory,” Math. Rep. Ser. 2, 1, 349–515 (1984).Google Scholar
  20. 20.
    Astashkin S. V., “On interpolation of subspaces of rearrangement invariant spaces generated by Rademacher system,” Izv. Ross. Akad. Estestv. Nauk Ser. MMMIU, 1, No.1, 18–35 (1997).Google Scholar
  21. 21.
    Kalton N. J., “Calderon couples of rearrangement invariant spaces,” Studia Math., 106, No.3, 233–277 (1993).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. V. Astashkin
    • 1
  1. 1.Samara State UniversitySamara

Personalised recommendations