Skip to main content
Log in

Möbius-invariant metrics and generalized angles in Ptolemeic spaces

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study Möbius and quasimöbius mappings in spaces with a semimetric meeting the Ptolemy inequality. We construct a bimetrization of a Ptolemeic space which makes it possible to introduce a Möbius-invariant metric (angular distance) in the complement to each nonsingleton. This metric coincides with the hyperbolic metric in the canonical cases. We introduce the notion of generalized angle in a Ptolemeic space with vertices a pair of sets, determine its magnitude in terms of the angular distance and study distortion of generalized angles under quasimöbius embeddings. As an application to noninjective mappings, we consider the behavior of the generalized angle under projections and obtain an estimate for the inverse distortion of generalized angles under quasimeromorphic mappings (mappings with bounded distortion).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gehring F. W. and Palka B., “Quasiconformally homogeneous domains,” J. Anal. Math., 30, No.5, 172–199 (1976).

    Google Scholar 

  2. Gehring F. W. and Osgood B. G., “Uniform domains and the quasi-hyperbolic metric,” J. Anal. Math., 45, 50–74 (1979).

    Google Scholar 

  3. Ferrand J., “A characterization of quasiconformal mappings by the behavior of a function of three points,” in: Proc. 13th Rolf Nevanlinna Colloquium (Joensuu, 1987), Springer-Verlag, Berlin; Heidelberg; New York; London; Paris; Tokyo, 1988, pp. 110–123. (Lecture Notes in Math.; 1351.)

    Google Scholar 

  4. Seittenranta P., “Möbius-invariant metrics,” Math. Proc. Cambridge Phil. Soc., 125, 511–533 (1999).

    Google Scholar 

  5. Agard S. and Gehring F. W., “Angles and quasiconformal mappings,” Proc. London Math. Soc. (3), 14A, 1–21 (1965).

    Google Scholar 

  6. Agard S. B., “Angles and quasiconformal mappings in space,” J. Anal. Math., 22, 177–200 (1969).

    Google Scholar 

  7. Taari O., “Characterisierung der Quasikonformität mit Hilfe der Winkelverzerrung,” Ann. Acad. Sci. Fenn. A1, 362, 1–11 (1965).

    Google Scholar 

  8. Aseev V. V., “Möbius-invariant metrics of space domains,” in: Abstracts: The Fourth Siberian Congress on Applied and Industrial Mathematics Dedicated to the Memory of M. A. Lavrent’ev. Part 1, Inst. Mat. (Novosibirsk), Novosibirsk, 2000, pp. 148–149.

  9. Aseev V. V. and Tetenov A. V., “Angular characteristics of the pairs of sets and a problem of quasisymmetric glueing,” in: Proceedings of the Lobachevski\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) Center in Mathematics: Function Theory, Its Applications, and Related Problems. Materials of the 6th Kazan’ International Summer School-Conference [in Russian], Izdat. Kazan’ Mat. Obshch., Kazan’, 2003, 19, pp. 16–17.

    Google Scholar 

  10. Blumenthal M. L., Theory and Applications of Distance Geometry, Clarendon Press, Oxford (1953).

    Google Scholar 

  11. Bourbaki N., General Topology. Use of Real Numbers in General Topology. Function Spaces. Summary of Results [Russian translation], Nauka, Moscow (1968).

    Google Scholar 

  12. Berdon A. F., The Geometry of Discrete Groups [Russian translation], Nauka, Moscow (1986).

    Google Scholar 

  13. Wermer J., Potential Theory, Springer-Verlag, Berlin; Heidelberg; New York; London; Paris; Tokyo (1974). (Lecture Notes in Math.; 408.)

    Google Scholar 

  14. Vuorinen M., Conformal Geometry and Quasiregular Mappings, Springer-Verlag, Berlin; Heidelberg; New York; London; Paris; Tokyo (1988). (Lecture Notes in Math., 1319.)

    Google Scholar 

  15. Berger M., Geometry. Vol. 1 [Russian translation], Mir, Moscow (1984).

    Google Scholar 

  16. Jiang Yueping, “On Clifford cross-ratio and its application,” J. Hunan Univ. (in China), 20, No.2, 21–25 (1993).

    Google Scholar 

  17. Aseev V. V., “Quasisymmetric embeddings and mappings with bounded modulus distortion,” submitted to VINITI on November 6, 1984, No. 7190-84.

  18. Väisälä J., “Quasimöbius maps,” J. Anal. Math., 44, 218–234 (1984/85).

    Google Scholar 

  19. Aseev V. V., “On metrization with distortion coefficients of a space of domains,” in: Group and Metric Properties of Mappings [in Russian], Novosibirsk State University, Novosibirsk, 1995, 1, pp. 97–105.

    Google Scholar 

  20. Martio O., Rickman S., and Väisälä J., “Distortion and singularities of quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A 1 Math., 465, 1–13 (1970).

    Google Scholar 

  21. Reshetnyak Yu. G., Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  22. Martio O., Rickman S., and Väisälä J., “Definitions for quasiregular mappings,” Ann. Acad. Sci. Fenn. Ser. A 1 Math., 448, 1–40 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2005 Aseev V. V., Sychëv A. V., and Tetenov A. V.

Translated from Sibirski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) Matematicheski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) Zhurnal, Vol. 46, No. 2, pp. 243–263, March–April, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aseev, V.V., Sychëv, A.V. & Tetenov, A.V. Möbius-invariant metrics and generalized angles in Ptolemeic spaces. Sib Math J 46, 189–204 (2005). https://doi.org/10.1007/s11202-005-0020-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11202-005-0020-3

Keywords

Navigation