Skip to main content

Advertisement

Log in

Magnetic methods in tracing soil erosion, Kharkov Region, Ukraine

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Magnetic measurements of soils are an effective research tool in assessing soil erosion. This approach is based on detecting layers showing different magnetic properties in vertical soil profiles and lateral catenas. The objective of this research is to compile data on magnetic susceptibility (MS) of soils in Eastern Ukraine to assess the soil erosion rates. The chernozems of Tcherkascy Tishki (Kharkov Region, Ukraine) have undergone a field crop rotation without proper soil conservation technologies being applied. We conducted an intrinsic element grouping of the magnetic susceptibility values and demonstrated that they can be used as MS cartograms in soil erosion mapping. The study showed a strong correlation between the MS values and the erosion index. MS and the erosion index were found to correlate with the humus content. Magnetic mineralogical analyses suggest the presence of highly magnetic minerals (magnetite and maghemite) as well as weakly magnetic goethite, ferrihydrite, and hematite. Stable pseudosingle-domain (PSD), single-domain (SD), and superparamagnetic (SP) grains of pedogenic origin dominate in the studied chernozems. Being an effective, quick and low cost alternative, magnetic methods can be successfully used in the soil erosion investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong A., Quinton J.N. and Maher B.A., 2012. Thermal enhancement of natural magnetism as a tool for tracing eroded soil. Earth Surf. Process. Landf., 37, 1567–1572.

    Article  Google Scholar 

  • Brevik E.C., Calzolari C., Miller B.A., Pereira P., Kabala C., Baumgarten A. and Jordán A., 2016. Soil mapping, classification, and pedologic modeling: history and future directions. Geoderma, 264, 256–274.

    Article  Google Scholar 

  • Brevik E.C. and Hartemink A.E., 2013. Soil maps of the United States of America. Soil Sci. Soc. Am. J., 77, 1117–1132.

    Article  Google Scholar 

  • Bulygin S.Y., Breus N.M. and Semynozhenko T.A., 1998. Methods of determining the degree of soil erodibility on slopes. Pochvovedenie, 6, 714–718 (in Russian).

    Google Scholar 

  • Cerdà A., Imeson A.C. and Calvo C.A., 1995. Fire and aspect induced differences on the erodibility and hydrology of soils at La Costera, Valencia, southeast Spain. Catena, 24, 289–304.

    Article  Google Scholar 

  • Dunlop D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc). 2. Application to data for rocks, sediments, and soils. J. Geophys. Res.-Solid Earth, 107, 2057.

    Article  Google Scholar 

  • Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, New York.

    Book  Google Scholar 

  • Day R., Fuller M. and Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter., 13, 260–267.

    Article  Google Scholar 

  • Evans M.E. and Heller F., 2003. Environmental Magnetism. Principles and Applications of Enviromagnetics. Academic Press, San Diego, CA.

    Google Scholar 

  • Fernandez-Calvino D., Garrido-Rodriguez B., Lopez-Periago J.E., Paradelo M. and Arias-Estevez M., 2013. Spatial distribution of copper fractions in a vineyard soil. Land Degrad. Dev., 24, 556–563.

    Article  Google Scholar 

  • García-Orenes F., Cerdà A., Mataix-Solera J., Guerrero C., Bodí M. B., Arcenegui V., Zornoza R. and Sempere J.G., 2009. Effects of agricultural management on surface soil properties and soil-water losses in eastern Spain. Soil Tillage Res., 106, 117–123.

    Article  Google Scholar 

  • Gennadiev A.N., Golosov V.N., Chernyanskii S.S., Markelov M.V., Kovach R.G., Belyaev V.R. and Ivanova N.N., 2006. Comparative assessment of the contents of magnetic spherules, 137Cs, and 210Pb in soils as applied for the estimation of soil erosion. Eurasian Soil Sci., 39, 1100–1115.

    Article  Google Scholar 

  • Gennadiev A.N., Zhidkin A.P., Olson K.R. and Kachinskii V.L., 2010. Soil erosion under different land uses: assessment by the magnetic tracer method. Eurasian Soil Sci., 43, 1047–1054.

    Article  Google Scholar 

  • Górka-Kostrubiec B., Teisseyre-Jeleńska M. and Dytłow S.K., 2016. Magnetic properties as indicators of Chernozem soil development. Catena, 138, 91–102.

    Article  Google Scholar 

  • Gubbins D. and Herrero-Bervera E., 2007. Encyclopedia of Geomagnetism and Paleomagnetism. Springer-Verlag, Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Hanesch M., Stanjek H. and Petersen N., 2006. Thermomagnetic measurements of soil iron minerals: the role of organic carbon. Geophys. J. Int., 165, 53–61.

    Article  Google Scholar 

  • Hanesch M. and Scholger R., 2005. The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophys. J. Int., 161, 50–56.

    Article  Google Scholar 

  • Haregeweyn N., Poesen J., Verstraeten G., Govers G., de Vente J., Nyssen J., Deckers J. and Moeyersons J., 2013. Assessing the performance of a spatially distributed soil erosion and sediment delivery model (WATEM/SEDEM in Northern Ethiopia). Land Degrad. Dev., 24, 188–204.

    Article  Google Scholar 

  • Ibáñez J.J., Pérez-Gómez R. and Martínez F.S.J., 2009. The spatial distribution of soils across Europe: A fractal approach. Ecol. Complex., 6, 294–301.

    Article  Google Scholar 

  • Jakšík O., Kodešová R., Kapička A., Klement A., Fér M. and Nikodem A., 2016. Using magnetic susceptibility mapping for assessing soil degradation due to water erosion. Soil Water Res., 11(2), 105–113.

    Article  Google Scholar 

  • Jordanova D. and Jordanova N., 2016. Thermomagnetic behavior of magnetic susceptibility - heating rate and sample size effects. Front. Earth Sci., 3, 90, DOI: 10.3389/feart.2015.00090.

    Article  Google Scholar 

  • Jordanova D., Jordanova N. and Petrov P., 2014. Pattern of cumulative soil erosion and redistribution pinpointed through magnetic signature of Chernozem soils. Catena, 120, 46–56.

    Article  Google Scholar 

  • Jordanova D., Jordanova N. and Werban U., 2013. Environmental significance of magnetic properties of Gley soils near Rosslau (Germany). Environ. Earth Sci., 69, 1719–1732.

    Article  Google Scholar 

  • Jordanova D., Jordanova N., Atanasova A., Tsacheva T. and Petrov P., 2011. Soil tillage erosion by using magnetism of soils–a case study from Bulgaria. Environ. Monit. Assess., 183, 381–394.

    Article  Google Scholar 

  • Kapička A., Dlouhá S., Grison H., Jakšík O., Petrovský E. and Kodešová R., 2013. Magnetic properties of soils - a basis for erosion study at agricultural land in Southern Moravia. SGEM2013 Conference Proceedings, 577–584, DOI: 10.5593/SGEM2013/BC3/S13.013.

    Google Scholar 

  • Karchegani P.M., Ayoubi S., Lu S.G. and Honarju N., 2011. Use of magnetic measures to assess soil redistribution following deforestation in hilly region. J. Appl. Geophys., 75, 227–236.

    Article  Google Scholar 

  • Kirkby M.J. and Morgan R.P.C. (Eds), 1980. Soil Erosion. John Wiley, Chichester.

    Google Scholar 

  • Kruglov O. and Menshov O., 2017. To the soil magnetic susceptibility application in modern soil science. 16th International Conference on Geoinformatics - Theoretical and Applied Aspects. European Association of Geoscientists & Engineers, Houten, The Netherlands, DOI: 10.3997/2214-4609.201701906 (in Russian).

    Google Scholar 

  • Kutsenko N.V., 2003. Geosystem concept of erosion process modelling. Newsletter of the European Society for Soil Conservation, 2, 4–8.

    Google Scholar 

  • Lovley D.R. and Philips E.J.P., 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol., 51, 683–689.

    Google Scholar 

  • Maher B.A., 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeogr. Palaeoclimat. Palaeoecol., 137, 25–54.

    Article  Google Scholar 

  • Mandal D. and Sharda V.N., 2013. Appraisal of soil erosion risk in the Eastern Himalayan region of India for soil conservation planning. Land Degrad. Dev., 24, 430–437.

    Google Scholar 

  • Menshov O., Kruglov O. and Sukhorada A., 2012. Informational content of the soil magnetism indicators for solving agrogeophysical and soil science tasks. Sci. Bull. Nat. Mining Univ., 3, 7–12 (in Russian).

    Google Scholar 

  • Menshov O., Kuderavets R., Vyzhva S., Maksymchuk V., Chobotok I. and Pastushenko T., 2016. Magnetic studies at Starunia paleontological and hydrocarbon bearing site (Carpathians, Ukraine). Stud. Geophys. Geod., 60, 731–746.

    Article  Google Scholar 

  • Mighall T.M., Foster I.D.L., Rowntree K.M. and Boardman J., 2012. Reconstructing recent land degradation in the semi-arid Karoo of the South Africa: A poleoecological study at Compassberg, Eastern Cape. Land Degrad. Dev., 23, 523–533.

    Article  Google Scholar 

  • Müller M., Kurz G. and Yaramanci U., 2009. Influence of tillage methods on soil water content and geophysical properties. Near Surf. Geophys., 7, 27–36.

    Google Scholar 

  • Mullins C.E., 1977. Magnetic susceptibility of the soil and its significance in soil science - a review. J. Soil Sci., 28, 223–246.

    Article  Google Scholar 

  • Nazarok P., Kruglov O., Menshov O., Kutsenko M. and Sukhorada A., 2014. Mapping soil erosion using magnetic susceptibility. A case study in Ukraine. Solid Earth Discuss., 6, 831–848

    Article  Google Scholar 

  • Olson K.R., Gennadiyev A.N., Zhidkin A.P., Markelov M., Golosov V.N. and Lang J.M., 2013. Use of magnetic tracer and radio-cesium methods to determine past cropland soil erosion amounts and rates. Catena, 104, 103–110.

    Article  Google Scholar 

  • Pereira P., Cerdà A., Úbeda X., Mataix-Solera J., Martin D., Jordán A. and Burguet M., 2013. Spatial models for monitoring the spatio-temporal evolution of ashes after fire - a case study of a burnt grassland in Lithuania. Solid Earth, 4, 153–165.

    Article  Google Scholar 

  • Pereira P., Cerdà A., Úbeda X., Mataix–Solera J., Arcenegui V. and Zavala L.M., 2015. Modelling the impacts of wildfire on ash thickness in a short–term period. Land Degrad. Dev., 26, 180–192.

    Article  Google Scholar 

  • Royall D., 2001. Use of mineral magnetic measurements to investigate soil erosion and sediment delivery in a small agricultural catchment in limestone terrain. Catena, 46, 15–34.

    Article  Google Scholar 

  • Sadiki A., Faleh A., Navas A. and Bouhlassa S., 2009. Using magnetic susceptibility to assess soil degradation in the Eastern Rif, Morocco. Earth Surf. Process. Landf., 34, 2057–2069.

    Article  Google Scholar 

  • Shvebs G.I., 1981. Theoretical Bases of Erosion. Vysha shkola, Kyiv, Ukraine (in Russian).

    Google Scholar 

  • Sutherland R.A., 1989. Quantification of accelerated soil erosion using the environmental tracer caesium-137. Land Degrad. Dev., 1, 199–208.

    Article  Google Scholar 

  • Sydsaeter K. and Hammond P., 1995. Mathematics for Economic Analysis. Prentice Hall, Englewood Cliffs, NJ, 173–175.

    Google Scholar 

  • Taylor R.M., Maher B.A. and Self P.G, 1987. Magnetite in soils: I. The synthesis of single-domain and superparamagnetic magnetite. Clay Miner., 22, 411–422.

    Article  Google Scholar 

  • Tesfahunegn G.B., 2014. Soil quality assessment strategies for evaluating soil degradation in Northern Ethiopia. Appl. Environ. Soil Sci., 2014, 646502.

    Google Scholar 

  • Wang H., Huo Y., Zeng L., Wu X. and Cai Y., 2008. A 42-yr soil erosion record inferred from mineral magnetism of reservoir sediments in a small carbonate-rock catchment, Guizhou Plateau, southwest China. J. Paleolimnol., 40, 897–921.

    Article  Google Scholar 

  • Zaslavsky M.N., 1984. Erosion. Vysha shkola, Moscow, Russia (in Russian).

    Google Scholar 

  • Zhang S., Yan L., Huang J., Mu L., Huang Y., Zhang X. and Sun Y., 2016. Spatial heterogeneity of soil C:N ratio in a Mollisol watershed on Northeast of China. Land Degrad. Dev., 27, 295–304.

    Article  Google Scholar 

  • Zhao G., Mu X., Wen Z., Wang F. and Gao P., 2013. Soil erosion, conservation, and ecoenvironment changes in the Loess Plateau of China. Land Degrad. Dev., 24, 499–510.

    Google Scholar 

  • Ziadat F.M. and Taimeh A.Y., 2013. Effect of rainfall intensity, slope and land use and antecedent soil moisture on soil erosion in an arid environment. Land Degrad. Dev., 24, 582–590.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr Menshov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menshov, O., Kruglov, O., Vyzhva, S. et al. Magnetic methods in tracing soil erosion, Kharkov Region, Ukraine. Stud Geophys Geod 62, 681–696 (2018). https://doi.org/10.1007/s11200-018-0803-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-018-0803-1

Keywords

Navigation