Skip to main content
Log in

Experiences with the use of mass-density maps in residual gravity forward modelling

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

In many modern local and regional gravity field modelling concepts, the short-wavelength gravitational signal modeled by the residual terrain modelling (RTM) technique is used to augment global geopotential models, or to smooth observed gravity prior to data gridding. In practice, the evaluation of RTM effects mostly relies on a constant density assumption, because of the difficulty and complexity of obtaining information on the actual distribution of density of topographic masses. Where the actual density of topographic masses deviates from the adopted value, errors are present in the RTM mass-model, and hence, in the forward-modelled residual gravity field. In this paper we attempt to overcome this problem by combining the RTM technique with a high-resolution mass-density model. We compute RTM gravity quantities over New Zealand, with different combinations of elevation models and mass-density assumptions using gravity and GPS/levelling measurements, precise terrain and bathymetry models, a high-resolution mass-density model and constant density assumptions as main input databases. Based on gravity observations and the RTM technique, optimum densities are detected for North Island of ~2500 kg m−3, South Island of ~2600 kg m−3, and the whole New Zealand of ~2590 kg m−3. Comparison among the three sets of residual gravity disturbances computed from different mass-density assumptions show that, together with a global potential model, the high-resolution New Zealand density model explains ~89.5% of gravitational signals, a constant density assumption of 2670 kg m−3 explains ~90.2%, while a regionally optimum mass-density explains ~90.3%. Detailed comparison shows that the New Zealand density model works best over areas with small residual heights. Over areas with larger residual heights, subsurface density variations appear to affect the residual gravity disturbance. This effect is found to reach about 30 mGal over Southern Alpine Fault. In order to improve the RTM modelling with mass-density maps, a higher-quality mass-density model that provides radially varying mass-density data would be desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amos M.J., 2007. Quasigeoid Modelling in New Zealand to Unify Multiple Local Vertical Datums. PhD Thesis. Curtin University of Technology, Perth, Australia.

    Google Scholar 

  • Becker J.J., Sandwell D.T., Smith W.H.F., Braud J., Binder B., Depner J., Fabre D., Factor J., Ingalls S., Kim S-H., Landner R., Marks K., Nelson S., Pharaoh A., Trimmer R., Rosenberg J.V., Wallace G. and Weather P., 2009. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geod., 32, 355–371.

    Article  Google Scholar 

  • Bucha B. and Janak J., 2014. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders: Efficient computation at irregular surfaces. Comput. Geosci., 66, 219–227.

    Article  Google Scholar 

  • Bucha B., Janák J., Papčo J. and Bezděk A., 2016. High-resolution regional gravity field modelling in a mountainous area from terrestrial gravity data. Geophys. J. Int., 207, 949–966.

    Article  Google Scholar 

  • Chen W. and Tenzer R., 2014. Harmonic coefficients of the Earth’s Spectral Crustal Model 180 — ESCM180. Earth Sci. Inf., 8, 147–159.

    Article  Google Scholar 

  • Claessens S.J., Hirt C., Amos M.J., Featherstone W.E. and Kirby J.F., 2011. The NZGEOID09 model of New Zealand. Surv. Rev., 43, 2–15.

    Article  Google Scholar 

  • Dziewonski A. M. and Anderson D.L., 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.

    Article  Google Scholar 

  • Dziewonski A.M., Hales A.L. and Lapwood E.R., 1975. Parametrically simple Earth models consistent with geophysical data. Phys. Earth Planet. Inter., 10, 12–48.

    Article  Google Scholar 

  • Eshagh M., 2009. The effect of lateral density variations of crustal and topographic masses on GOCE gradiometric data — A study in Iran and Fennoscandia. Acta Geod. Geophys., 44, 399–418.

    Article  Google Scholar 

  • Farr T.G., Paul A.R., Edward C., Robert C., Riley D., Scott H., Kobrick M., Paller M., Rodriguez E., Roth L., Seal D., Shaffer S., Shimada J., Umland J., Werner M., Oskin M., Burbank D. and Alsdorf D., 2007. The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004.

    Article  Google Scholar 

  • Förste C., Bruinsma S.L., Abrikosow O., Lemoine J.M., Marty J.C., Flechtner F., Balmino G., Barthelmes F. and Biancale R., 2014. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, GFZ Potsdam, Germany, DOI: https://doi.org/10.5880/icgem.2015.1

    Google Scholar 

  • Forsberg R., 1984. A Study Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modelling. Report No. 355, Department of Geodesic Science and Survey, Ohio State University, Columbus, OH.

    Google Scholar 

  • Forsberg R. and Olesen A.V., 2010. Airborne gravity field determination. In: Xu G.C. (Ed.), Sciences of Geodesy — I. Springer-Verlag, Berlin, Germany, 83–104.

    Chapter  Google Scholar 

  • Forsberg R. and Tscherning C.C., 1981. The use of height data in gravity field approximation by collocation. J. Geophys. Res., 86, 7843–7854.

    Article  Google Scholar 

  • Gilardoni M., Reguzzoni M. and Sampietro D., 2016. GECO: a global gravity model by locally combining GOCE data and EGM2008. Stud. Geophys. Geod., 60, 228–247.

    Article  Google Scholar 

  • Gladkikh V. and Tenzer R., 2011. A mathematical model of the global ocean saltwater density distribution. Pure Appl. Geophys., 169, 249–257.

    Article  Google Scholar 

  • Grombein T., Seitz K. and Heck B., 2013. Optimized formulas for the gravitational field of a tesseroid. J. Geodesy, 87, 645–660.

    Article  Google Scholar 

  • Heck B. and Seitz K., 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geodesy, 81, 121–136.

    Article  Google Scholar 

  • Hinze W.J., 2003. Bouguer reduction density, why 2.67? Geophysics, 68, 1559–1560.

    Article  Google Scholar 

  • Hirt C., 2010. Prediction of vertical deflections from high-degree spherical harmonic synthesis and residual terrain model data. J. Geodesy, 84, 179–190.

    Article  Google Scholar 

  • Hirt C., 2013. RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone. Mar. Geod., 36, 183–202.

    Article  Google Scholar 

  • Hirt C., 2016. Gravity forward modelling. In: Grafarend E. (Ed.), Encyclopedia of Geodesy. Springer, Cham, Switzerland, DOI: https://doi.org/10.1007/978-3-319-02370-0_106-1.

    Google Scholar 

  • Hirt C., Claessens S., Fecher T., Kuhn M., Pail R. and Rexer M., 2013. New ultrahigh-resolution picture of Earth’s gravity field. Geophys. Res. Lett., 40, 4279–4283.

    Article  Google Scholar 

  • Hirt C., Featherstone W. E. and Marti U., 2010. Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J. Geodesy, 84, 557–567.

    Article  Google Scholar 

  • Hirt C. and Flury J., 2008. Astronomical-topographic levelling using high-precision astrogeodetic vertical deflections and digital terrain model data. J. Geodesy, 82, 231–248.

    Article  Google Scholar 

  • Hirt C., Kuhn M., Claessens S., Pail R., Seitz K. and Gruber T., 2014. Study of the Earth’s shortscale gravity field using the ERTM2160 gravity model. Comput. Geosci., 73, 71–80.

    Article  Google Scholar 

  • Hirt C. and Rexer M., 2015. Earth2014: 1 arc-min shape, topography, bedrock and ice-sheet models — Available as gridded data and degree 10,800 spherical harmonics. Int. J. Appl. Earth Obs. Geoinf., 39, 103–112.

    Article  Google Scholar 

  • Huang J., Vanicek P., Pagiatakis S.D. and Brink W., 2001. Effect of topographical density on the geoid in the Canadian Rocky Mountains. J. Geodesy, 74, 805–815.

    Article  Google Scholar 

  • Jarvis A., Reuter H.I., Nelson A. and Guevara E., 2008. Hole-filled SRTM for the global Version 4. CGIAR-CSI SRTM 90m Database (https://doi.org/http://srtm.csi.cgiar.org).

    Google Scholar 

  • Jekeli C., Yanh H.J. and Kwon J.H., 2009. Evaluation of EGM08-globally and locally in South Korea. In: Huang J. and Kotsakis C. (Eds), External Quality Evaluation Reports of EGM08. Newton’s Bulletin, 4, 38–49 (https://doi.org/http://www.isgeoid.polimi.it/Newton/Newton_4/NEWTON4_TOTAL.pdf).

    Google Scholar 

  • Jiang T. and Wang Y.M., 2016. On the spectral combination of satellite gravity model, terrestrial and airborne gravity data for local gravimetric geoid computation. J. Geodesy, 90, 1405–1418.

    Article  Google Scholar 

  • Kuhtreiber N., 1998. Precise geoid determination using a density variation model. Phys. Chem. Earth, 23, 59–63.

    Article  Google Scholar 

  • Kuhn M. and Hirt C., 2016. Topographic gravitational potential up to second-order derivatives: an examination of approximation errors caused by rock-equivalent topography (RET). J. Geodesy, 90, 883–902.

    Article  Google Scholar 

  • Li X. and Grötze H.J., 2001. Tutorial-ellipsoid, geoid, gravity, geodesy, and geophysics. Geophysics, 66, 1660–1668.

    Article  Google Scholar 

  • Martinec Z., 1993. Effect of Lateral Density Variations of Topographical Masses in View of Improving Geoid Model Accuracy over Canada. Final Report of DSS contract No. 23244-2-4356. Geodetic Survey of Canada, Ottawa.

    Google Scholar 

  • Martinec Z., Vaniček P., Mainville A. and Veronneau M., 1995. The effect of lake water on geoidal height. Manuscipta Geodaetica, 20, 193–203.

    Google Scholar 

  • Nagy D., Papp G. and Benedek, J., 2000. The gravitational potential and its derivatives for the prism. J. Geodesy, 74, 552–560.

    Article  Google Scholar 

  • NASA, 2015. The Shuttle Radar Topography Mission (SRTM) Collection User Guide (https://doi.org/https://lpdaac.usgs.gov/sites/default/files/public/measures/docs/NASA_SRTM_V3.pdf).

    Google Scholar 

  • Omang O.C.D. and Forsberg R., 2000. How to handle topography in practical geoid determination: three examples. J. Geodesy, 74, 458–466.

    Article  Google Scholar 

  • Omang O.C.D., Tscherning C.C. and Forsberg R., 2012. Generalizing the harmonic reduction procedure in residual topographic modeling. In: Sneeuw N., Novák P., Crespi M. and Sanso F. (Eds), VII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia 137, 233–238, Springer-Verlag, Berlin, Heidelberg, Germany.

    Article  Google Scholar 

  • Pasyanos M.E., Masters T.G., Laske G. and Ma Z., 2014. LITHO 1.0: An updated crust and lithospheric model of the Earth. J. Geophys. Res. Solid Earth, 119, 2153–2173.

    Article  Google Scholar 

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res.-Solid Earth, 117, 1978–2012.

    Article  Google Scholar 

  • Rexer M. and Hirt C., 2015. Spectral analysis of the Earth’s topographic potential via 2D-DFT: a new data-based degree variance model to degree 90,000. J. Geodesy, 89, 887–909.

    Article  Google Scholar 

  • Rexer M., Hirt C., Bucha B. and Holmes S., 2018. Solution to the spectral filter problem of residual terrain modelling (RTM). J. Geodesy, 92, 675–690.

    Article  Google Scholar 

  • Root B.C., Novák P., Dirkx D., Kaban M., van der Wal W. and Vermeersen L.L.A., 2016. On a spectral method for forward gravity field modelling. J. Geodyn., 97, 22–30.

    Article  Google Scholar 

  • Sjöberg L.E., 2004. The effect on the geoid of lateral topographic density variations. J. Geodesy, 78, 34–39.

    Google Scholar 

  • Tenzer R. and Hamayun P.I., 2010. A Comparison of various integration methods for solving Newton’s integral in detailed forward modelling. In: Mertikas S.P. (Ed.), Gravity, Geoid, and Earth Observation. International Association of Geodesy Symposia 135, 361–368, Springer-Verlag, Berlin, Heidelberg, Germany.

    Article  Google Scholar 

  • Tenzer R., Novák P. and Gladkikh V., 2011a. On the accuracy of the bathymetry-generated gravitational field quantities for a depth-dependent seawater density distribution. Stud. Geophys. Geodaet., 55, 609–626.

    Article  Google Scholar 

  • Tenzer R., Sirguey P., Rattenbury M. and Nicolson J., 2011b. A digital rock density map of New Zealand. Comput. Geosci., 37, 1181–1191.

    Article  Google Scholar 

  • Tenzer R., Novák P. and Gladkikh V., 2012. The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of the seawater density. Mar. Geod., 35, 198–220.

    Article  Google Scholar 

  • Tenzer R., Chen W., Tsoulis D., Bagherbandi M., Sjoberg L. E., Novák P. and Jin S.G., 2014. Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv. Geophys., 36, 139–165.

    Article  Google Scholar 

  • Tenzer R, Hirt C., Novák P., Pitoňák M. and Šprlák, M., 2015. Contribution of mass density heterogeneities to the quasigeoid-to-geoid separation. J. Geodesy, 90, 65–80.

    Article  Google Scholar 

  • Torge W. and Müller J., 2012. Geodesy. 4th Edition. De Gruyter, Berlin/Boston.

    Book  Google Scholar 

  • Tsoulis D., 2012. Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics, 77, F1–F11.

    Article  Google Scholar 

  • Tziavos I.N. and Featherstone W.E., 2001. First results of using digital density data in gravimetric geoid computation in Australia. In: Sideris M.G. (Ed.), Gravity, Geoid, and Geodynamics 2000. International Association of Geodesy Symposia 123, 335–340, Springer-Verlag, Berlin, Heidelberg, Germany.

    Article  Google Scholar 

  • Tziavos I.N. and Sideris M.G., 2013. Topographic reductions in gravity and geoid determination. In: Sanso F. and Sideris M.G. (Ed.), Geoid Determination Theory and Methods. Lecture Notes in Earth System Sciences 110, 337–400, Springer-Verlag, Berlin, Germany.

    Article  Google Scholar 

  • Tziavos I.N., Vergos G.S. and Grigoriadis V.N., 2010. Investigation of topographic reductions and aliasing effects on gravity and the geoid over Greece based on Various digital terrain models. Surv. Geophys., 31, 23–67.

    Article  Google Scholar 

  • Wu Y.H., Luo Z.C., Chen W. and Chen Y.Q., 2017. High-resolution regional gravity field recovery from Poisson wavelets using heterogeneous observational techniques. Earth Planets Space, 69, 2–15.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Hirt, C., Tenzer, R. et al. Experiences with the use of mass-density maps in residual gravity forward modelling. Stud Geophys Geod 62, 596–623 (2018). https://doi.org/10.1007/s11200-017-0656-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-017-0656-z

Keywords

Navigation