Skip to main content
Log in

Comparison of least-squares and simulated annealing to estimate fault parameters from airborne gravity gradiometry

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The inverse problem of estimating parameters (e.g., size, depth) of subsurface structures can be considered as an optimization problem where the parameters of a constructed forward model are estimated from observations collected on or above the Earth’s surface by minimizing the difference between the predicted model and the observations. Traditional solutions based on gradient-based approaches applied to nonlinear and non-unique problems basically depend on the initial conditions and may not always converge to the global minimum of the cost function if the starting model is far away from the true model. Alternatives to these straightforward approaches are innovative methods such as random search techniques that operate directly on the nonlinear models. This study compares a Monte-Carlo optimization method called Simulated Annealing (SA) to the Least-Squares Solution (LESS) within the general Gauss-Helmert formulation to estimate the parameters of a dip-slip fault from gravity gradient measurements as might be collected on profiles surveyed by an airborne system. It is shown that the SA algorithm is a more robust technique with respect to initial conditions in that it proceeds more comprehensively in parameter space and converges to their true values and thus the global minimum of the cost function. The SA algorithm is able to estimate the parameters of the fault as well as or better than LESS, and in the presence of significant background geologic and observation noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baselga S., 2007. Global optimization solution of robust estimation. J. Surv. Eng., 133, 123–128.

    Article  Google Scholar 

  • Baselga S. and Asce M., 2011. Second-order design of geodetic networks by the simulated annealing. J. Surv. Eng., 137, 167–173.

    Article  Google Scholar 

  • Bell Geospace, 2008. Final Report of Processing and Acquisition of Air-FTG Data in Vinton Dome, Louisiana. Bell Geospace, Inc., Houston, TX.

    Google Scholar 

  • Corana A., Marchesi M., Martini C. and Ridella S., 1987. Minimizing multimodal functions of continuous variables with the “Simulated Annealing”. ACM Trans. Math. Softw., 13, 262–280.

    Article  Google Scholar 

  • Ge Y.W., Kang S.Z., Ling D.G., Chang W.F., Liang H.X. and Zhong S.S., 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequences. Chinese J. Geophys., 51, 569–583.

    Article  Google Scholar 

  • Geman S., and Geman D., 1984. Stochastic relaxation, Gibbs distribution and the Bayesian restoration in images. IEEE Trans. Patt. Anan. Mac. Intel., 6, 721–741.

    Article  Google Scholar 

  • Goffe W., Ferrier G.D. and Rogers J., 1994. Global optimization of statistical functions with simulated annealing. J. Econom., 60, 65–99.

    Article  Google Scholar 

  • Hajek B., 1988. Cooling schedules for optimal annealing. Math. Oper. Res., 13, 311–317.

    Article  Google Scholar 

  • Hastings W.K., 1970. Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97–109.

    Article  Google Scholar 

  • Jekeli C., 1988. The gravity gradiometer survey system. EOS Trans. AGU, 69(8), 105, 116–117.

    Google Scholar 

  • Jekeli C., 2006. Airborne gradiometry error analysis. Surv. Geophys., 27, 257–275.

    Article  Google Scholar 

  • Kirkpatrick S., Gelatt C.D. and Vecchi M.P., 1983. Optimization by simulated annealing. Science, 220, 671–680.

    Article  Google Scholar 

  • Khodabandeh A. and Amiri-Simkooei A., 2010. Recursive algorithm for L1 estimation in linear model. J. Surv. Eng., 137, 1–8.

    Article  Google Scholar 

  • Kohrn S.B., Bonet C., DiFrancesco D. and Gibson H., 2011. Geothermal exploration using gravity gradiometry- a Salton Sea example. GRC Trans., 35, 1699–1702.

    Google Scholar 

  • Lenzmann L. and Lenzmann E., 2004. Strenge Auswertung des nichtlinearen Gauß-Helmert- Modells. Allgemeine Vermessungs-Nachrichten, 2, 68–72 (in German).

    Google Scholar 

  • Metropolis N., Rosenbluth A.W., Rosenbluth M.N. and Teller A.H., 1953. Equation of state calculations by fast computing machines. J. Chem. Phys., 21, 1087–1092.

    Article  Google Scholar 

  • Mundim K.C., Lemaire T.J. and Bassrei A., 1998. Optimization of non-linear gravity models through generalized simulated annealing. Physica A, 252, 405–416.

    Article  Google Scholar 

  • Nagihara S. and Hall S.A., 2001. Three-dimensional gravity inversion using simulated annealing: Constraints on the diapiric roots of allocthhonous salt structures. Geophysics, 66, 1438–1449.

    Article  Google Scholar 

  • Pope J.A., 1972. Some pitfalls to be avoided in the iterative adjustment of nonlinear problems. Proceedings of the 38th Annual Meeting of the American Society of Photogrammetry, 449–477.

    Google Scholar 

  • Represas P., Monteiro Santos F.A., Ribeiro J., Ribeiro J.A., Almeida E.P., Gonçalves R., Moreira M. and Mendes-Victor L.A., 2013. Interpretation of gravity data to delineate structural features connected to low-temperature geothermal resources at Northeastern Portugal. J. Appl. Geophys., 92, 30–38.

    Article  Google Scholar 

  • Roy L., Sen M.K., Blankenship D.D., Stoffa P.L. and Richter T.G., 2005. Inversion and uncertainty estimation of gravity data using simulated annealing: An application over Lake Vostok, East Antarctica. Geophysics, 70, J1–J12.

    Google Scholar 

  • Sambridge M. and Mosegaard K., 2002. Monte Carlo methods in geophysical inverse problems. Rev. Geophys., 40, 1–29.

    Article  Google Scholar 

  • Schaffrin B. and Snow K., 2010. Total Least-Squares regularization of Tykhonov type and an ancient racetrack in Corinth. Linear Alg. Appl, 432, 2061–2076.

    Article  Google Scholar 

  • Sen M. and Stoffa P.L., 1995. Global Optimization Methods in Geophysical Inversion. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Sharma S.P. and Biswas A., 2013. Interpretation of self-potential anomaly over a 2D inclined structure using very fast simulated-annealing global optimization-An insight about ambiguity. Geophysics, 78, WB3–Wb15.

    Article  Google Scholar 

  • Snow K., 2012. Topics in Total Least-Squares Adjustment within the Errors-In-Variables Model: Singular Cofactor Matrices and Prior Information. Report No.502, Division of Geodetic Science, School of Earth Sciences, The Ohio State University, Columbus, OH, USA.

    Google Scholar 

  • Shoffner J.D., Li Y., Sabin A. and Lazaro M., 2011. Understanding the utility of gravity and gravity gradiometry for geothermal exploration in the Southern Walker Lake Basin, Nevada. GRC Trans., 35, 1747–1751.

    Google Scholar 

  • Teunissen P., 1989. First and second moments of nonlinear least-squares estimators. J. Geodesy, 63, 253–262.

    Article  Google Scholar 

  • Teunissen P., 1990. Nonlinear least-squares. Manuscripta Geodaetica, 15, 137–150.

    Google Scholar 

  • van Laarhoven P.J.M. and Aarts E.H.L., 1987. Simulated Annealing: Theory and Applications, Mathematics and Its Applications. Reidel Publishing Company, Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Vasco D.W. and Taylor C., 1991. Inversion of airborne gravity gradient data, Southwestern Oklahoma. Geophysics, 56, 90–101.

    Google Scholar 

  • Xu P., 2003. A hybrid global optimization method: The multi-dimensional case. J. Comput. Appl. Math., 155, 423–446.

    Article  Google Scholar 

  • Wang L., Shum C.K., Simons F.J., Tassara A., Erkan K., Jekeli C., Braun A., Kuo C., Lee H. and Yuan D.N., 2012. Coseismic slip of the 2010 Mw 8.8 Great Maule, Chile earthquake quantified by the inversion of GRACE observations. Earth Planet. Sci. Lett., 335, 167–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Jekeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzun, S., Jekeli, C. Comparison of least-squares and simulated annealing to estimate fault parameters from airborne gravity gradiometry. Stud Geophys Geod 59, 21–50 (2015). https://doi.org/10.1007/s11200-014-0712-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-014-0712-x

Keywords

Navigation