Determining factors of cities’ centrality in the interregional innovation networks of China’s biomedical industry

Abstract

This study analyzed the determinants of regions’ degree centrality as well as their variation over time in interregional innovation networks and compared the differences in factors between developed and less developed regions(core and periphery). Focusing on China’s biomedical industry, we used the prefecture-level invention co-patents data (2012–2017) to construct intercity networks and related cities’ centrality to sector-region-specific factors. We found: (1) A “convergence” process of regional embeddedness exists in innovation networks among cities. (2) The volume of national public funding for fundamental researches in the biomedical industry plays the most important role in cities’ centrality, regardless of developed or undeveloped cities. (3) For the developed cities’ centrality position, the intensity of intraregional collaboration in the biomedical industry is the secondary influencing factor, besides, other positive factors involve innovation performance, industrial market application, and cluster competitiveness, but it does not affect peripheral cities. (4) The second most influential factor in peripheral cities’ centrality is the number of biomedical firms. We concluded that despite the influence of path dependence, in the field of the analytical industry, China’s public funding for basic research has narrowed the gap in networking capability between the developed and backward cities.

This is a preview of subscription content, access via your institution.

Fig.1
Fig. 2

References

  1. Addie, J-P D., Angrisani M., & De Falco, S. (2018). University-led innovation in and for peripheral urban areas: New approaches in Naples, Italy and Newark, NJ, US. European Planning Studies, 26(6), 1181–1201. https://doi.org/10.1080/09654313.2018.1459505.

    Article  Google Scholar 

  2. Asheim, B. T., & Coenen, L. (2005). Knowledge bases and regional innovation systems: Comparing Nordic clusters. Research Policy, 34(8), 1173–1190. https://doi.org/10.1016/j.respol.2005.03.013.

    Article  Google Scholar 

  3. Asheim, B. T., Coenen, L., & Vang, J. (2007). Face-to-face, buzz and knowledge bases: Socio-spatial implications for learning and innovation policy. Environment & Planning C, 25(5), 655–670. https://doi.org/10.1068/c0648.

    Article  Google Scholar 

  4. Berge, L. R., Wanzenboeck, I., & Scherngell, T. (2017). Centrality of regions in R&D networks: A new measurement approach using the concept of bridging paths. Regional studies, 51(8), 1165–1178. https://doi.org/10.1080/00343404.2016.1269885.

    Article  Google Scholar 

  5. Berman, A., Marino, A., & Mudambi, R. (2020). The global connectivity of regional innovation systems in Italy: A core–periphery perspective. Regional Studies, 54(5), 677–691. https://doi.org/10.1080/00343404.2019.1672865.

    Article  Google Scholar 

  6. Charles, D. (2006). Universities as key knowledge infrastructures in regional innovation systems. Innovation: The European Journal of Social Science Research, 19(1), 117–130. https://doi.org/10.1080/13511610600608013.

    MathSciNet  Article  Google Scholar 

  7. Clarysse, B., Wright, M., Bruneel, J., et al. (2014). Creating value in ecosystems: Crossing the chasm between, knowledge and business ecosystems. Research Policy, 43(7), 1164–1176. https://doi.org/10.1016/j.respol.2014.04.014.

    Article  Google Scholar 

  8. Consoli, D., & Mina, A. (2009). An evolutionary perspective on health innovation systems. Journal of Evolutionary Economics, 19(2), 297–319. https://doi.org/10.1007/s00191-008-0127-3.

    Article  Google Scholar 

  9. De Marchi, V. (2012). Environmental innovation and R&D cooperation: Empirical evidence from Spanish manufacturing firms. Research Policy, 41(3), 614–623. https://doi.org/10.1016/j.respol.2011.10.002.

    Article  Google Scholar 

  10. Eder, J. (2019). Innovation in the periphery: A critical survey and research agenda. International Regional Science Review, 42(2), 119–146. https://doi.org/10.1177/0160017618764279.

    Article  Google Scholar 

  11. Fitjar, R. D., & Rodriguez-Pose, A. (2019). Where cities fail to triumph: The impact of urban location and local collaboration on innovation in Norway. Journal of Regional Science, 60(1), 5–32. https://doi.org/10.1111/jors.12461.

    Article  Google Scholar 

  12. Fortunato, S., Bergstrom, C. T., Boerner, K., et al. (2018). Science of science. Science, 359(63799), 1–7. https://doi.org/10.1126/science.aao0185.

    Article  Google Scholar 

  13. Franzoni, C., & Sauermann, H. (2014). Crowd science: The organization of scientific research in open collaborative projects. Research Policy, 43(1), 1–20. https://doi.org/10.1016/j.respol.2013.07.005.

    Article  Google Scholar 

  14. Gilsing, V., Nooteboom, B., Vanhaverbeke, W., et al. (2008). Network embeddedness and the exploration of novel technologies: Technological distance, betweenness centrality and density. Research Policy, 37(10), 1717–1731. https://doi.org/10.1016/j.respol.2008.08.010.

    Article  Google Scholar 

  15. Gluckler, J. (2014). How controversial innovation succeeds in the periphery? A network perspective of BASF Argentina. Journal of Economic Geography, 14(5), 903–927. https://doi.org/10.1093/jeg/lbu016.

    Article  Google Scholar 

  16. Grillitsch, M., & Nilsson, M. (2015). Innovation in peripheral regions: Do collaborations compensate for a lack of local knowledge spillovers? Annals of Regional Science, 54(1), 299–321. https://doi.org/10.1007/s00168-014-0655-8.

    Article  Google Scholar 

  17. Grillitsch, M., Rekers, J. V., & Toedtling, F. (2019). When drivers of clusters shift scale from local towards global: What remains for regional innovation policy? Geoforum, 102, 57–68. https://doi.org/10.1016/j.geoforum.2019.03.010.

    Article  Google Scholar 

  18. Guan, J. C., Zhang, J. J., & Yan, Y. (2015). The impact of multilevel networks on innovation. Research Policy, 44(3), 545–559. https://doi.org/10.1016/j.respol.2014.12.007.

    Article  Google Scholar 

  19. Habersetzer, A., Grèzes-Bürcher, S., Boschma, R., & Mayer, H. (2019). Enterprise-related social capital as a driver of firm growth in the periphery? Journal of Rural Studies, 65(1), 143–151. https://doi.org/10.1016/j.jrurstud.2018.10.009.

    Article  Google Scholar 

  20. Herstad, S. J., & Ebersberger, B. (2015). On the link between urban location and the involvement of knowledge-intensive business services firms in collaboration networks. Regional Studies, 49(7), 1160–1175. https://doi.org/10.1080/00343404.2013.816413.

    Article  Google Scholar 

  21. Huggins, R., Izushi, H., & Prokop, D. (2019). Regional advantage and the geography of networks: Explaining global-local knowledge sourcing patterns. Regional Science, 98(4), 1567–1584. https://doi.org/10.1111/pirs.12423.

    Article  Google Scholar 

  22. Isaksen, A. (2015). Industrial development in thin regions: Trapped in path extension? Journal of Economic Geography, 15(3), 585–600. https://doi.org/10.1093/jeg/lbu026.

    Article  Google Scholar 

  23. Isaksen, A., & Trippl, M. (2016). Exogenously led and policy supported new path development in peripheral regions: Analytical and synthetic routes. Economic Geography, 93(5), 436–457. https://doi.org/10.1080/00130095.2016.1154443.

    Article  Google Scholar 

  24. Kalantaridis, C., & Bika, Z. (2011). Entrepreneurial origin and the configuration of innovation in rural areas: The case of Cumbria, North West England. Environment and Planning A, 43(4), 866–884. https://doi.org/10.1068/a43341.

    Article  Google Scholar 

  25. Lawton Smith, H. (2007). Universities, innovation, and territorial development: A review of the evidence. Environment and Planning C, 25(1), 98–114. https://doi.org/10.1068/c0561.

    Article  Google Scholar 

  26. Liu, D., Song, M., Xie, Y. N., Feng, Y., & Liu, Q. (2017). Analysis of ESI highly cited papers supported by NSFC during 2009–2015. Bulletin of National Natural Science Foundation of China, 31(04), 353–358. https://doi.org/10.16262/j.cnki.1000-8217.2017.04.007.

    Article  Google Scholar 

  27. Marek, D., & Blazek, J. (2016). The challenge of breaking the academia- business firewall in Czechia: Comparing the role of differentiated knowledge bases in collaborative R&D projects. European Planning Studies, 24(4), 809–831. https://doi.org/10.1080/09654313.2015.1121204.

    Article  Google Scholar 

  28. McCann, P., & Ortega-Argilés, R. (2013). Modern regional innovation policy. Cambridge Journal of Regions, Economy and Society, 6(2), 187–216. https://doi.org/10.1093/cjres/rst007.

    Article  Google Scholar 

  29. Meng, J., Qiu, C. B., & Yu, B. J. (2019). Review of the research on the effect of National Natural Science Foundation Financing for scientific papers. Information Science, 37(12), 166–171. https://doi.org/10.13833/j.issn.1007-7634.2019.12.027.

    Article  Google Scholar 

  30. Mitze, T., & Strotebeck, F. (2018). Centrality and get-richer mechanisms in interregional knowledge networks. Regional Studies, 52(11), 1477–1489. https://doi.org/10.1080/00343404.2018.1424992.

    Article  Google Scholar 

  31. National Bureau of Statistic of China [NBSC]. (2017). China statistical yearbook on high technology industry. Beijing, China: China Statistics Press. https://doi.org/10.42967/y.cnki.yzggj.2020.000011.

    Google Scholar 

  32. Nepelski, D., & De Prato, G. (2018). The structure and evolution of ICT global innovation network. Industry and Innovation, 25(10), 940–965. https://doi.org/10.1080/13662716.2017.1343129.

    Article  Google Scholar 

  33. Plum, O., & Hassink, R. (2011). Comparing knowledge networking in different knowledge bases in Germany. Papers in Regional Science, 90(2), 355–371. https://doi.org/10.1111/j.1435-5957.2011.00362.x.

    Article  Google Scholar 

  34. Raagmaa, G., & Keerberg, A. (2017). Regional higher education institutions in regional leadership and development. Regional Studies, 51(2), 260–272. https://doi.org/10.1080/00343404.2016.1215600.

    Article  Google Scholar 

  35. Scott, A., & Storper, M. (2015). The nature of cities: The scope and limits of urban theory. International Journal of Urban and Regional Research, 39(1), 1–15. https://doi.org/10.1111/1468-2427.12134.

    Article  Google Scholar 

  36. Sun, Y. T., & Liu, K. (2016). Proximity effect, preferential attachment and path dependence in inter-regional network: A case of China’s technology transaction. Scientometrics, 108(1), 201–220. https://doi.org/10.1007/s11192-016-1951-0.

    Article  Google Scholar 

  37. Ter Wal, A., & Boschma, R. (2011). Co-evolution of firms, industries and networks in space. Regional Studies, 45(7), 919–933. https://doi.org/10.1080/00343400802662658.

    Article  Google Scholar 

  38. Todtling, F., Lehner, P., & Kaufmann, A. (2009). Do different types of innovation rely on specific kinds of knowledge interactions? Technovation, 29(1), 59–71. https://doi.org/10.1016/j.technovation.2008.05.002.

    Article  Google Scholar 

  39. Toepfer, S., Cantner, U., & Graf, H. (2019). Structural dynamics of innovation networks in German Leading-Edge Clusters. Journal of Technology Transfer, 44(6), 1816–1839. https://doi.org/10.1007/s10961-017-9642-4.

    Article  Google Scholar 

  40. Trippl, M., Grillitsch, M., & Isaksen, A. (2018). Exogenous sources of regional industrial change. Progress in Human Geography, 42(5), 687–705. https://doi.org/10.1177/0309132517700982.

    Article  Google Scholar 

  41. Varga, A., Pontikakis, D., & Chorafakis, G. (2014). Metropolitan Edison and cosmopolitan Pasteur? Agglomeration and interregional research network effects on European R&D productivity. Journal of Economic Geography, 14(2), 229–263. https://doi.org/10.1093/jeg/lbs041.

    Article  Google Scholar 

  42. Wanzenboeck, I., Scherngell, T., & Brenner, T. (2014). Embeddedness of regions in European knowledge networks: A comparative analysis of inter-regional R&D collaborations, co-patents and co-publications. Annals of Regional Science, 53(2), 337–368. https://doi.org/10.1007/s00168-013-0588-7.

    Article  Google Scholar 

  43. Wu, X. L., Zhang, C. Z., Zhu, Z. Y., & Liu, H. N. (2019). A study on the differences between Chinese and English journal papers supported by the National Natural Science Funds. Bulletin of National Natural Science Foundation of China, 33(5), 486–495. https://doi.org/10.16262/j.cnki.1000-8217.2019.05.012.

    Article  Google Scholar 

  44. Ye, Q., & Zeng, G. (2018). Comparison of innovation networks of analytical and synthetic industries: An empirical analysis on China biomedicine and environmental protection industry. Economic Geography (in China), 38(10), 142–154. https://doi.org/10.15957/j.cnki.jjdl.2018.10.018.

    Article  Google Scholar 

  45. Zeng, S. X., Xie, X. M., & Tam, C. M. (2010). Relationship between cooperation networks and innovation performance of SMEs. Technovation, 30(3), 181–194. https://doi.org/10.1016/j.technovation.2009.08.003.

    Article  Google Scholar 

  46. Zhou, K. Z., & Li, C. B. (2012). How knowledge affects radical innovation: Knowledge base, market knowledge acquisition, and internal knowledge sharing. Strategic Management Journal, 33(9), 1090–1102. https://doi.org/10.1002/smj.1959.

    Article  Google Scholar 

  47. Zhu, S. J., He, C. F., & Zhou, Y. (2017). How to jump further and catch up? Path-breaking in an uneven industry space. Journal of Economic Geography, 17(3), 521–545. https://doi.org/10.1093/jeg/lbw047.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (41901142, 41730642).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qin Ye.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, Q., Xu, X. Determining factors of cities’ centrality in the interregional innovation networks of China’s biomedical industry. Scientometrics (2021). https://doi.org/10.1007/s11192-020-03853-3

Download citation

Keywords

  • Biomedical industry
  • Interregional innovation networks
  • Centrality
  • Developed cities
  • Periphery