Dot-science top level domain: Academic websites or dumpsites?

Abstract

Dot-science was launched in 2015 as a new academic top-level domain aimed to provide ‘a dedicated, easily accessible location for global Internet users with an interest in science’. The main objective of this work is to find out the general scholarly usage of this top-level domain. In particular, the following three questions are pursued: usage (number of web domains registered with the dot-science), purpose (main function and category of websites linked to these web domains), and impact (websites’ visibility and authority). To do this, 13,900 domain names were gathered through ICANN’s Domain Name Registration Data Lookup database. Each web domain was subsequently categorized, and data on web impact were obtained from Majestic’s API. Based on the results obtained, it is concluded that the dot-science top-level domain is scarcely adopted by the academic community, and mainly used by registrar companies for reselling purposes (35.5% of all web domains were parked). Websites receiving the highest number of backlinks were generally related to non-academic websites applying intensive link building practices and offering leisure or even fraudulent contents. Majestic’s trust flow metric has been proved an effective method to filter reputable academic websites. As regards primary academic-related dot-science web domain categories, 1175 (8.5% of all web domains registered) were found, mainly personal academic websites (342 web domains), blogs (261) and research groups (133). All dubious content reveals bad practices on the Web, where the tag ‘science’ is fundamentally used as a mechanism to deceive search engine algorithms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    https://www.iana.org/domains/root/db.

  2. 2.

    https://newgtlds.icann.org/en/program-status/delegated-strings.

  3. 3.

    http://nic.science/why.html.

  4. 4.

    https://domaintyper.com/new-gTLD/applicant/Famous-Four-Media.

  5. 5.

    https://www.iana.org/domains/root/db/science.html.

  6. 6.

    http://domainincite.com/23284-famous-four-is-dead-new-registry-promises-spam-crackdown.

  7. 7.

    http://domainincite.com/23302-i-was-wrong-famous-four-bosses-were-kicked-out.

  8. 8.

    https://www.icann.org/resources/pages/science-2015-03-01-en.

  9. 9.

    https://whois.nic.science.

  10. 10.

    https://majestic.com.

  11. 11.

    https://ahrefs.com.

  12. 12.

    https://moz.com/link-explorer.

  13. 13.

    https://www.semrush.com.

  14. 14.

    https://developer-support.majestic.com/api.

  15. 15.

    https://www.domainpulse.com/2019/03/15/alpnames-is-no-more-as-icann-terminates-registrar-days-after-going-offline.

References

  1. Aguillo, I. F., Granadino, B., Ortega, J. L., & Prieto, J. A. (2006). Scientific research activity and communication measured with cybermetrics indicators. Journal of the American Society for Information Science and Technology, 57(10), 1296–1302.

    Article  Google Scholar 

  2. Aguillo, I. F., Ortega, J. L., & Fernández, M. (2008). Webometric ranking of world universities: Introduction, methodology, and future developments. Higher Education in Europe, 33(2–3), 233–244.

    Article  Google Scholar 

  3. Aguillo, I., Ortega, J., Fernández, M., & Utrilla, A. (2010). Indicators for a webometric ranking of open access repositories. Scientometrics, 82(3), 477–486.

    Article  Google Scholar 

  4. Almind, T. C., & Ingwersen, P. (1997). Informetric analyses on the World Wide Web: Methodological approaches to’webometrics’. Journal of Documentation, 53(4), 404–426.

    Article  Google Scholar 

  5. Bar-Ilan, J. (2001). Data collection methods on the Web for infometric purposes—A review and analysis. Scientometrics, 50(1), 7–32.

    MathSciNet  Article  Google Scholar 

  6. Barjak, F. (2006). The role of the internet in informal scholarly communication. Journal of the American Society for Information Science and Technology, 57(10), 1350–1367.

    Article  Google Scholar 

  7. Barjak, F., Li, X., & Thelwall, M. (2007). Which factors explain the web impact of scientists’ personal homepages? Journal of the American Society for Information Science and Technology, 58(2), 200–211.

    Article  Google Scholar 

  8. Björneborn, L., & Ingwersen, P. (2004). Toward a basic framework for webometrics. Journal of the American Society for Information Science and Technology, 55(14), 1216–1227.

    Article  Google Scholar 

  9. Bollen, J., & Sompel, H. V. D. (2008). Usage impact factor: The effects of sample characteristics on usage-based impact metrics. Journal of the American Society for Information Science and technology, 59(1), 136–149.

    Article  Google Scholar 

  10. Bollen, J., Van de Sompel, H., Hagberg, A., & Chute, R. (2009). A principal component analysis of 39 scientific impact measures. PLoS ONE, 4(6), e6022.

    Article  Google Scholar 

  11. Chudnovskiy, A. (2017). Categorization system (U.S. Patent No. 9679048). https://patents.google.com/patent/US9679048

  12. Chudnovskiy, A. (2019). Categorization system (U.S. Patent, No. 10404739). https://patents.google.com/patent/US10404739B2

  13. Fortunato, S., Bergstrom, C. T., Börner, K., Evans, J. A., Helbing, D., Milojević, S., et al. (2018). Science of science. Science, 359(6379), eaao0185.

    Article  Google Scholar 

  14. Halvorson, T., Szurdi, J., Maier, G., Felegyhazi, M., Kreibich, C., Weaver, N., Levchenko, K,. & Paxson, V. (2012). The BIZ top-level domain: ten years later. In International Conference on Passive and Active Network Measurement (pp. 221–230). Springer, Berlin, Heidelberg.

  15. Ingwersen, P. (1998). The calculation of web impact factors. Journal of Documentation, 54(2), 236–243.

    Article  Google Scholar 

  16. Kousha, K., Thelwall, M., & Rezaie, S. (2010). Using the web for research evaluation: The integrated online impact indicator. Journal of Informetrics, 4(1), 124–135.

    Article  Google Scholar 

  17. Larsen, C. (2015). The .Science of Shady TLD use. Symantec Official Blog. https://www.symantec.com/connect/blogs/science-shady-tld-use

  18. Li, X., Thelwall, M., Wilkinson, D., & Musgrove, P. (2005). National and international university departmental Web site interlinking: Part 1: Validation of departmental link analysis. Scientometrics, 64(2), 151–185.

    Article  Google Scholar 

  19. Li, X., Thelwall, M., Wilkinson, D., & Musgrove, P. (2005). National and international university departmental Web site interlinking: Part 2: Link patterns. Scientometrics, 64(2), 187–208.

    Article  Google Scholar 

  20. Luzón, M. J. (2009). Scholarly hyperwriting: The function of links in academic weblogs. Journal of the American Society for Information Science and Technology, 60(1), 75–89.

    Article  Google Scholar 

  21. Más-Bleda, A., & Aguillo, I. F. (2013). Can a personal website be useful as an information source to assess individual scientists? The case of European highly cited researchers. Scientometrics, 96(1), 51–67.

    Article  Google Scholar 

  22. Más-Bleda, A., Thelwall, M., Kousha, K., & Aguillo, I. F. (2014). Successful researchers publicizing research online. Journal of Documentation, 70(1), 148–172.

    Article  Google Scholar 

  23. Minguillo, D., & Thelwall, M. (2012). Mapping the network structure of science parks: An exploratory study of cross-sectoral interactions reflected on the web. Aslib Proceedings, 64(4), 332–357.

    Article  Google Scholar 

  24. Orduña-Malea, E., & Aguillo, I. F. (2015). Cibermetría. Midiendo el espacio red. Barcelona: UOC Publishing.

    Google Scholar 

  25. Orduña-Malea, E. (2013). Aggregation of the web performance of internal university units as a method of quantitative analysis of a university system: The case of Spain. Journal of the American Society for Information Science and Technology, 64(10), 2100–2114.

    Article  Google Scholar 

  26. Orduña-Malea, E., & Delgado López-Cózar, E. (2015). The dark side of open access in Google and Google Scholar: The case of Latin-American repositories. Scientometrics, 102(1), 829–846.

    Article  Google Scholar 

  27. Ortega, J. L., & Aguillo, I. F. (2009). Mapping world-class universities on the web. Information Processing and Management, 45(2), 272–279.

    Article  Google Scholar 

  28. Park, H. W., & Thelwall, M. (2003). Hyperlink analyses of the World Wide Web: A review. Journal of Computer-Mediated Communication. https://doi.org/10.1111/j.1083-6101.2003.tb00223.x.

    Article  Google Scholar 

  29. Payne, N., & Thelwall, M. (2007). A longitudinal study of academic webs: growth and stabilization. Scientometrics, 71(3), 523–539.

    Article  Google Scholar 

  30. Shema, H., Bar-Ilan, J., & Thelwall, M. (2012). Research blogs and the discussion of scholarly information. PLoS ONE, 7(5), e35869.

    Article  Google Scholar 

  31. Thelwall, M. (2002). Conceptualizing documentation on the web: an evaluation of different heuristic-based models for counting links between university web sites. Journal of the American Society for Information Science and Technology, 53(12), 995–1005.

    Article  Google Scholar 

  32. Thelwall, M. (2003). Web use and peer interconnectivity metrics for academic Web sites. Journal of information science, 29(1), 1–10.

    Article  Google Scholar 

  33. Thelwall, M. (2004). Link analysis: An information science approach. Amsterdam: Academic Press.

    Google Scholar 

  34. Thelwall, M. (2006). Interpreting social science link analysis research: a theoretical framework. Journal of the American Society for Information Science and Technology, 57(1), 60–68.

    Article  Google Scholar 

  35. Thelwall, M. (2009). Introduction to webometrics: Quantitative web research for the social sciences. New York: Morgan & Claypool.

    Google Scholar 

  36. Thelwall, M. (2010). Webometrics: Emergent or Doomed? Information Research, 15(4), n4.

    Google Scholar 

  37. Thelwall, M. (2012). A history of webometrics. Bulletin of the American Society for Information Science and Technology, 38(6), 18–23.

    Article  Google Scholar 

  38. Thelwall, M. (2012). Journal impact evaluation: a webometric perspective. Scientometrics, 92(2), 429–441.

    Article  Google Scholar 

  39. Thelwall, M., & Kousha, K. (2015). Web indicators for research evaluation. Part 1: Citations and links to academic articles from the Web. El Profesional de la Información, 24, 5.

    Article  Google Scholar 

  40. Thelwall, M., Li, X., Barjak, F., & Robinson, S. (2008). Assessing the international web connectivity of research groups. Aslib Proceedings, 60(1), 18–31.

    Article  Google Scholar 

  41. Thelwall, M., & Sud, P. (2011). A comparison of methods for collecting web citation data for academic organizations. Journal of the American Society for Information Science and Technology, 62(8), 1488–1497.

    Article  Google Scholar 

  42. Thelwall, M., Sud, P., & Wilkinson, D. (2012). Link and co-inlink network diagrams with URL citations or title mentions. Journal of the American Society for Information Science and Technology, 63(4), 805–816.

    Article  Google Scholar 

  43. Utrilla-Ramírez, A. M., Aguillo, I. F., & Ortega, J. L. (2011). Visibilidad de la web hospitalariaiberoamericana. Perspectiva de suactividadcientífica en internet. MedicinaClínica, 137(13), 605–611.

    Google Scholar 

  44. Vaughan, L., & Romero-Frías, E. (2014). Web search volume as a predictor of academic fame: An exploration of Google trends. Journal of the Association for Information Science and Technology, 65(4), 707–720.

    Article  Google Scholar 

  45. Vaughan, L., & Thelwall, M. (2003). Scholarly use of the Web: What are the key inducers of links to journal Web sites? Journal of the American Society for Information Science and Technology, 54(1), 29–38.

    Article  Google Scholar 

  46. W3 Techs: Web Technology Surveys (2020). Usage statistics of .science for websites. W3 Techs. https://w3techs.com/technologies/details/tld-science-.

  47. Warren, H. R., Raison, N., & Dasgupta, P. (2017). The rise of altmetrics. Jama, 317(2), 131–132.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enrique Orduña-Malea.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orduña-Malea, E. Dot-science top level domain: Academic websites or dumpsites?. Scientometrics (2021). https://doi.org/10.1007/s11192-020-03832-8

Download citation

Keywords

  • Informetrics
  • Webometrics
  • Top-level domains
  • Scientific communication
  • Web authority
  • Academic websites