A clustering-based approach for the evaluation of candidate emerging technologies

Abstract

The aim of this study is to propose a clustering-based approach based on patent information for the evaluation of candidate emerging technologies. The proposed approach uses patent analysis and clustering approaches in data mining. Patent analysis is a widely used method for the evaluation of candidate emerging technologies in the literature. The clustering algorithms used in this study are self-organizing maps, expected maximization and density-based clustering. A real-life application on dental implant technology is presented to show how the proposed approach works in practice. The contributions of this study are twofold. This study contributes to the literature by taking into account claims, forward citations, backward citations, technology cycle times, and technology scores for the evaluation of candidate emerging technologies. Second, the evaluation of dental implant technology with respect to claims, forward citations, backward citations, technology cycle times, and technology scores has not been conducted so far. The results obtained from the application shows that dental implant technology is an candidate emerging technology and the proposed approach can be easily conducted in real life case studies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abraham, B. P., & Moitra, S. D. (2001). Innovation assessment through patent analysis. Technovation,21(4), 245–252.

    Google Scholar 

  2. Albiero, A. M., Benato, R., Momic, S., & Degidi, M. (2017). Implementation of computer-guided implant planning using digital scanning technology for restorations supported by conical abutments: A dental technique. The Journal of Prosthetic Dentistry,119(5), 720–726.

    Google Scholar 

  3. Altuntas, S., Dereli, T., & Kusiak, A. (2015a). Analysis of patent documents with weighted association rules. Technological Forecasting and Social Change,92, 249–262.

    Google Scholar 

  4. Altuntas, S., Dereli, T., & Kusiak, A. (2015b). Forecasting technology success based on patent data. Technological Forecasting and Social Change,96, 202–214.

    Google Scholar 

  5. Altuntas, F., & Karaman Akgul, A. (2019). Technologies evaluation with data mining: An application on radio frequency identification-(RFID) technologies. Verimlilik Dergisi,4, 65–86.

    Google Scholar 

  6. Altuntas, F., & Yilmaz, M. K. (2017). Using patent analysis to construct technology networks. Journal of Entrepreneurship and Innovation Management,6(2), 97–129.

    Google Scholar 

  7. An, H. J., & Ahn, S. J. (2016). Emerging technologies—beyond the chasm: Assessing technological forecasting and its implication for innovation management in Korea. Technological Forecasting and Social Change,102, 132–142.

    Google Scholar 

  8. Angelopoulos, C., & Aghaloo, T. (2011). Cone Beam Computed Tomography for the Implant Patient. Dental clinics of North America,55(1), 141–158.

    Google Scholar 

  9. Babík, O., Czán, A., Holubjak, J., Kameník, R., & Pilc, J. (2017). Identification of surface characteristics created by miniature machining of dental implants made of titanium based materials. Procedia Engineering,192, 1016–1021.

    Google Scholar 

  10. Bacchiocchi, E., & Montobbio, F. (2009). Symposium: innovation and intellectual property values: Knowledge diffusion from university and public research: a comparison between US, Japan and Europe using patent citations. Journal of Technology Transfer,34(2), 169–181.

    Google Scholar 

  11. Bengisu, M., & Nekhili, R. (2006). Forecasting emerging technologies with the aid of science and technology databases. Technological Forecasting and Social Change,73(7), 835–844.

    Google Scholar 

  12. Bhattacharya, S. (2004). Mapping inventive activity and technological change through patent analysis: A case study of India and China. Scientometrics,61(3), 361–381.

    Google Scholar 

  13. Block, M. S. (2018). Dental implants: The last 100 years. Journal of Oral and Maxillofacial Surgery,76(1), 11–26.

    Google Scholar 

  14. Boh, W. F., Evaristo, R., & Ouderkirk, A. (2014). Balancing breadth and depth of expertise for innovation: A 3M story. Research Policy,43(2), 349–366.

    Google Scholar 

  15. Breitzman, A., & Thomas, P. (2015). The emerging clusters model: A tool for identifying emerging technologies across multiple patent systems. Research Policy,44(1), 195–205.

    Google Scholar 

  16. Bruzzone, L., & Prieto, D. F. (2002). an adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing,11(4), 452–466.

    Google Scholar 

  17. Cao, G., Luo, P., Wang, L., & Yang, X. (2016). Key technologies for sustainable design based on patent knowledge mining. Procedia Cirp,39, 97–102.

    Google Scholar 

  18. Carminati, M., Caron, R., Maggi, F., Epifani, I., Zanero, S. (2014, June). BankSealer: An online banking fraud analysis and decision support system. In IFIP international information security conference (pp. 380–394). Springer, Berlin.

  19. Carpenter, M., Narin, F., & Woolf, P. (1981). Citation related to technologically importantpatents. World Patent Information,4, 160–163.

    Google Scholar 

  20. Chang, S. B. (2012). Using patent analysis to establish technological position: Two different strategic approaches. Technological Forecasting and Social Change,79(1), 3–15.

    Google Scholar 

  21. Chang, S. H., & Fan, C. Y. (2016). Identification of the technology life cycle of telematics: A patent-based analytical perspective. Technological Forecasting and Social Change,105, 1–10.

    Google Scholar 

  22. Chen, J., Zhang, Z., Chen, X., Zhang, C., Zhang, G., & Xu, Z. (2014). Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology. The Journal of prosthetic dentistry,112(5), 1088–1095.

    Google Scholar 

  23. Chen, X., Peng, Z., & Zeng, C. (2012, October). A co-training based method for Chinese patent semantic annotation. In Proceedings of the 21st ACM international conference on Information and knowledge management (pp. 2379–2382).

  24. Choi, J., & Hwang, Y. S. (2014). Patent keyword network analysis for improving technology development efficiency. Technological Forecasting and Social Change,83, 170–182.

    Google Scholar 

  25. Choi, S., & Jun, S. (2014). Vacant technology forecasting using new Bayesian patent clustering. Technology Analysis & Strategic Management,26(3), 241–251.

    Google Scholar 

  26. Clancy, M. S. (2018). Inventing by combining pre-existing technologies: Patent evidence on learning and fishing out. Research Policy,47(1), 252–265.

    Google Scholar 

  27. Cordeiro, J. M., Beline, T., Ribeiro, A. L. R., Rangel, E. C., da Cruz, N. C., Landers, R., et al. (2017). Development of binary and ternary titanium alloys for dental implants. Dental Materials,33(11), 1244–1257.

    Google Scholar 

  28. Corradini, C., & De Propris, L. (2017). Beyond local search: Bridging platforms and inter-sectoral technological integration. Research Policy,46(1), 196–206.

    Google Scholar 

  29. Dalva, D., Guz, U., & Gurkan, H. (2018). Effective semi-supervised learning strategies for automatic sentence segmentation. Pattern Recognition Letters,105, 76–86.

    Google Scholar 

  30. De Marco, A., Scellato, G., Ughetto, E., & Caviggioli, F. (2017). Global markets for technology: Evidence from patent transactions. Research Policy,46(9), 1644–1654.

    Google Scholar 

  31. Debackere, K., Clarysse, B., & Rappa, M. A. (1996). Dismantling the ivory tower: The influence of networks on innovative output in emerging technologies. Technological Forecasting and Social Change,53(2), 139–154.

    Google Scholar 

  32. Demircioglu, P. (2014). Estimation of surface topography for dental implants using advanced metrological technology and digital image processing techniques. Measurement,48, 43–53.

    Google Scholar 

  33. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the roYal Statistical Society: Series B,39, 1–38.

    MathSciNet  MATH  Google Scholar 

  34. Ester, M., Kriegel, H. P., Sander, J., Xu, X. (1996). A density-based algorithm for discovering cluster in large spatial databases with noise. In 2nd international conference on knowledge discovery and data mining (pp. 226–231).

  35. Fischer, T., & Leidnger, J. (2014). Testing patent value indicators on directly observed patent value—an empirical analysis of Ocean Tomo patent auctions. Research Policy,43(3), 519–529.

    Google Scholar 

  36. Fischer, T., & Ringler, P. (2014). What patents are used as collateral? —An empirical analysis of patent reassignment data. Journal of Business Venturing,29(5), 633–650.

    Google Scholar 

  37. Gao, Q., Huang, Y., Gao, X., Shen, W., & Zhang, H. (2015). A novel semi-supervised learning for face recognition. Neurocomputing,152, 69–76.

    Google Scholar 

  38. Gao, L., Porter, A. L., Wang, J., Fang, S., Zhang, X., Ma, T., et al. (2013). Technology life cycle analysis method based on patent documents. Technological Forecasting and Social Change,80(3), 398–407.

    Google Scholar 

  39. Grimaldi, M., Cricelli, L., & Rogo, F. (2018). Valuating and analyzing the patent portfolio: the patent portfolio value index. European Journal of Innovation Management.

  40. Guthikonda, S. M. (2005). Kohonen self-organizing maps. Wittenberg: Wittenberg University.

    Google Scholar 

  41. Harhoff, D., Narin, F., Scherer, F. M., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and Statistics,81(3), 511–515.

    Google Scholar 

  42. Haupt, R., Kloyer, M., & Lange, M. (2007). Patent indicators for the technology life cycle development. Research Policy,36(3), 387–398.

    Google Scholar 

  43. Hsu, C. W., Chang, P. L., Hsiung, C. M., & Wu, C. C. (2015). Charting the evolution of biohydrogen production technology through a patent analysis. Biomass and Bioenergy,76, 1–10.

    Google Scholar 

  44. Hussain, A., & Cambria, E. (2018). Semi-supervised learning for big social data analysis. Neurocomputing,275, 1662–1673.

    Google Scholar 

  45. Hájek, P., & Olej, V. (2011). Credit rating modelling by kernel-based approaches with supervised and semi-supervised learning. Neural Computing and Applications,20(6), 761–773.

    MATH  Google Scholar 

  46. Jang, H. J., Woo, H. G., & Lee, C. (2017). Hawkes process-based technology impact analysis. Journal of Informetrics,11(2), 511–529.

    Google Scholar 

  47. Jeong, C., & Kim, K. (2014). Creating patents on the new technology using analogy-based patent mining. Expert Systems with Applications,41(8), 3605–3614.

    Google Scholar 

  48. Johnson, W. H., & Liu, Q. (2011). Patenting and the role of technology markets in regional innovation in China: An empirical analysis. The Journal of High Technology Management Research,22(1), 14–25.

    Google Scholar 

  49. Kim, G., & Bae, J. (2017). A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change,117, 228–237.

    Google Scholar 

  50. Kim, A., & Cho, S. B. (2019). An ensemble semi-supervised learning method for predicting defaults in social lending. Engineering Applications of Artificial Intelligence,81, 193–199.

    Google Scholar 

  51. Kohonen, T. (1982). Analysis of a simple self-organizing process. Biological Cybernetics,44(2), 135–140.

    MathSciNet  MATH  Google Scholar 

  52. Kyebambe, M. N., Cheng, G., Huang, Y., He, C., & Zhang, Z. (2017). Forecasting emerging technologies: A supervised learning approach through patent analysis. Technological Forecasting and Social Change,125, 236–244.

    Google Scholar 

  53. Lee, C., Cho, Y., Seol, H., & Park, Y. (2012). A stochastic patent citation analysis approach to assessing future technological impacts. Technological Forecasting and Social Change,79(1), 16–29.

    Google Scholar 

  54. Lee, W. S., Han, E. J., & Sohn, S. Y. (2015). Predicting the pattern of technology convergence using big-data technology on large-scale triadic patents. Technological Forecasting and Social Change,100, 317–329.

    Google Scholar 

  55. Lee, C., Kwon, O., Kim, M., & Kwon, D. (2018). Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change,127, 291–303.

    Google Scholar 

  56. Lerner, J. (1994). The importance of patent scope: an empirical analysis. The RAND Journal of Economics,25(2), 319–333.

    MathSciNet  Google Scholar 

  57. Lesmes, D., & Laster, Z. (2011). Innovations in dental implant design for current therapy. Oral and Maxillofacial Surgery Clinics,23(2), 193–200.

    Google Scholar 

  58. Liu, R., Verbič, G., & Ma, J. (2019). A new dynamic security assessment framework based on semi-supervised learning and data editing. Electric Power Systems Research,172, 221–229.

    Google Scholar 

  59. Liu, C. Y., & Wang, J. C. (2010). Forecasting the development of the biped robot walking technique in Japan through S-curve model analysis. Scientometrics,82(1), 21–36.

    Google Scholar 

  60. Ma, T., & Zhang, A. (2018). Affinity network fusion and semi-supervised learning for cancer patient clustering. Methods,145, 16–24.

    Google Scholar 

  61. MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability,1(14), 281–297.

    MathSciNet  MATH  Google Scholar 

  62. Madani, F., & Weber, C. (2016). The evolution of patent mining: Applying bibliometrics analysis and keyword network analysis. World Patent Information,46, 32–48.

    Google Scholar 

  63. Mendonça, G., Mendonça, D. B., Aragao, F. J., & Cooper, L. F. (2008). Advancing dental implant surface technology–from micron-to nanotopography. Biomaterials,29(28), 3822–3835.

    Google Scholar 

  64. Mueller, S. C., Sandner, P. G., & Welpe, I. M. (2015). Monitoring innovation in electrochemical energy storage technologies: A patent-based approach. Applied Energy,137, 537–544.

    Google Scholar 

  65. No, H. J., An, Y., & Park, Y. (2015). A structured approach to explore knowledge flows through technology based business methods by integrating patent citation analysis and text mining. Technological Forecasting and Social Change,97, 181–192.

    Google Scholar 

  66. Novelli, E. (2015). An examination of the antecedents and implications of patent scope. Research Policy,44(2), 493–507.

    Google Scholar 

  67. Nuray, R., & Can, F. (2006). Automatic ranking of information retrieval systems using data fusion. Information Processing & Management,42(3), 595–614.

    MATH  Google Scholar 

  68. Ozdemir, M., Akbulak, C., & Yıldırım, H. H. (2010). Analysis of the spatial changes of forest areas in the Gelibolu peninsula historical national park through image difference method and expectation–maximization algorithm. Fırat Univ. J. Soc. Sci.,20(1), 115–138.

    Google Scholar 

  69. Park, S., Kim, J., Lee, H., Jang, D., & Jun, S. (2016). Methodology of technological evolution for three-dimensional printing. Industrial Management & Data Systems,116(1), 122–146.

    Google Scholar 

  70. Park, J., Lee, H., & Park, Y. (2009). Disembodied knowledge flows among industrial clusters: A patent analysis of the Korean manufacturing sector. Technology in Society,31(1), 73–84.

    Google Scholar 

  71. Rajeswar, A. R. (1996). Indian patent statistics—an analysis. Scientometrics,36(1), 109–130.

    Google Scholar 

  72. Ramakrishnaiah, R., Mohammad, A., Divakar, D. D., Kotha, S. B., Celur, S. L., Hashem, M. I., et al. (2017). Preliminary fabrication and characterization of electron beam melted Ti–6Al–4V customized dental implant. Saudi Journal of Biological Sciences,24(4), 787–796.

    Google Scholar 

  73. Rao, Y. V. D., Parimi, A. M., Rahul, D. S. P., Patel, D., & Mythreya, Y. N. (2017). Robotics in dental implantation. Materials Today: Proceedings,4(8), 9327–9332.

    Google Scholar 

  74. Revathi, A., Borrás, A. D., Muñoz, A. I., Richard, C., & Manivasagam, G. (2017). Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. Materials Science and Engineering: C,76, 1354–1368.

    Google Scholar 

  75. Shen, Y. C., Chang, S. H., Lin, G. T., & Yu, H. C. (2010). A hybrid selection model for emerging technology. Technological Forecasting and Social Change,77(1), 151–166.

    Google Scholar 

  76. Song, K., Kim, K., & Lee, S. (2018). Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents. Technological Forecasting and Social Change,128, 118–132.

    Google Scholar 

  77. Starczewski, A., & Krzyżak, A. (2015). Performance evaluation of the silhouette index. International Conference on Artificial Intelligence and Soft Computing (pp. 49–58). Cham: Springer.

    Google Scholar 

  78. Sun, T. M., Lan, T. H., Pan, C. Y., & Lee, H. E. (2018). Dental implant navigation system guide the surgery future. The Kaohsiung journal of medical sciences,34(1), 56–64.

    Google Scholar 

  79. Takahashi, D., Suzuki, H., & Komori, T. (2018). A clinical study of 103 dental implants in oral cancer patients after jaw resection. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology,30(3), 206–211.

    Google Scholar 

  80. Tong, X., & Frame, J. D. (1994). Measuring national technological performance with patent claims data. Research Policy,23, 133–141.

    Google Scholar 

  81. Trappey, C. V., Trappey, A. J., Peng, H. Y., Lin, L. D., & Wang, T. M. (2014). A knowledge centric methodology for dental implant technology assessment using ontology based patent analysis and clinical meta-analysis. Advanced Engineering Informatics,28(2), 153–165.

    Google Scholar 

  82. Trappey, C. V., Wang, T. M., Hoang, S., & Trappey, A. J. (2013). Constructing a dental implant ontology for domain specific clustering and life span analysis. Advanced Engineering Informatics,27(3), 346–357.

    Google Scholar 

  83. Van der Valk, T., Chappin, M. M., & Gijsbers, G. W. (2011). Evaluating innovation networks in emerging technologies. Technological Forecasting and Social Change,78(1), 25–39.

    Google Scholar 

  84. Verhaegen, P. A., D’hondt, J., Vertommen, J., Dewulf, S., & Duflou, J. R. (2011). Searching for similar products through patent analysis. Procedia Engineering,9, 431–441.

    Google Scholar 

  85. Vesselinov, V. V., Alexandrov, B. S., & O’Malley, D. (2018). Contaminant source identification using semi-supervised machine learning. Journal of Contaminant Hydrology,212, 134–142.

    Google Scholar 

  86. Witten, I. H., Frank, E., & Hall, M. A. (2011). Data mining practical machine learning tools and techniques third edition. Burlington: Morgan Kaufmann.

    Google Scholar 

  87. Xuexi, Z., Zhiwen, H., Heyuan, Z., Jinsong, C., & Zhao, L. (2017). Research on the Construction of Search Database Patent Platform for Intelligent Industrial Robots. Procedia Computer Science,107(C), 218–224.

    Google Scholar 

  88. Yoon, J., & Kim, K. (2012). An analysis of property-function based patent networks for strategic R&D planning in fast-moving industries: The case of silicon-based thin film solar cells. Expert System Application.,39(9), 7709–7717.

    Google Scholar 

  89. Yoshikane, F. (2014). Comparative analysis of patent citations of different fields. In consideration of the data size dependency of statistical measures. Procedia-Social and Behavioral Sciences,147, 153–159.

    Google Scholar 

  90. Yu, D., Chen, N., Jiang, F., Fu, B., & Qin, A. (2017). Constrained NMF-based semi-supervised learning for social media spammer detection. Knowledge-Based Systems,125, 64–73.

    Google Scholar 

  91. Zhu, X., & Goldberg, A. B. (2009). Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine learning,3(1), 1–130.

    MATH  Google Scholar 

  92. Zohrabian, V. M., Sonick, M., Hwang, D., & Abrahams, J. J. (2015). Dental implants. Seminars in Ultrasound,36(5), 415–426.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Serkan Altuntas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Altuntas, S., Erdogan, Z. & Dereli, T. A clustering-based approach for the evaluation of candidate emerging technologies. Scientometrics 124, 1157–1177 (2020). https://doi.org/10.1007/s11192-020-03535-0

Download citation

Keywords

  • Candidate emerging technologies
  • Dental implant technology
  • Patent analysis
  • Clustering algorithms
  • Technology indexes