Research hotspots and current challenges of lakes and reservoirs: a bibliometric analysis

Abstract

Despite covering a small portion of the earth’s surface, lakes and reservoirs offer enormous benefits to human society, environmental well-being, and economic welfare. Previous studies have provided insights into specific subjects, yet integrated perspectives on the development of the two waterbodies are missing. To this end, we conducted a bibliometric analysis as a systematic data gathering to perform a large-scale overview and assess global trends of their scientific publications. Moreover, a second goal is to differentiate their research hotspots and current challenges given the different nature of their origin and functionality. 147,811 publications from 1955 to 2019 were retrieved from the database of the Science Citation Index Expanded, and then, divided into four research lines, (1) design and operation; (2) environment and ecology; (3) sanitation and human health; (4) socioeconomics. Bibliometric indicators showed that the number of publications sustained a rapid growth, from 100 during the 1950s to around 7800 publications per year during the past few years. The United States and EU 28 have long been world leaders in lake and reservoir research yet China has tremendously boosted its publications within the past 20 years, advancing this nation to the new world leader in both categories in 2019. Taking a closer look at research hotspots, design and operation have been the main topics for reservoir research while environment and ecology topics are the hotspots in lakes-related studies. This reflected the intensive human interventions in reservoirs, whose major purposes are to supply hydropower energy, irrigation, water storage, and aquaculture. Conversely, the impacts of eutrophication, heavy metals, and climate change have become more severe with the increase of species extinction and biodiversity loss, leading to urgent needs for lake restoration. Both freshwater bodies show comparable attention on their roles in socioeconomics while much higher concerns about sanitation and human health have been paid in reservoirs compared to its counterpart. Clear obtained distinctions in the hotspots and challenges of lake and reservoir research can contribute to better decision support systems of the two waterbodies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics,11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007.

    Article  Google Scholar 

  2. Avnimelech, Y., Verdegem, M., Kurup, M., & Keshavanath, P. (2008). Sustainable land-based aquaculture: Rational utilization of water, land and feed resources. Mediterranean Aquaculture Journal,1(1), 45–55.

    Article  Google Scholar 

  3. Bartosiewicz, M., Laurion, I., & MacIntyre, S. (2015). Greenhouse gas emission and storage in a small shallow lake. Hydrobiologia,757(1), 101–115. https://doi.org/10.1007/s10750-015-2240-2.

    Article  Google Scholar 

  4. Bartram, A., El-Bizri, N., & Gittens, D. (2016). Water quality monitoring: A practical guide to the design and implementation of freshwater quality studies and monitoring programmes. Recto verso: Redefining the sketchbook (pp. 23–32). Abingdon: Routledge.

    Google Scholar 

  5. Bastviken, D., Cole, J., Pace, M., & Tranvik, L. (2004). Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles. https://doi.org/10.1029/2004gb002238.

    Article  Google Scholar 

  6. Belton, B., & Azad, A. (2012). The characteristics and status of pond aquaculture in Bangladesh. Aquaculture,358, 196–204. https://doi.org/10.1016/j.aquaculture.2012.07.002.

    Article  Google Scholar 

  7. Berga, L. (2016). The role of hydropower in climate change mitigation and adaptation: A review. Engineering,2(3), 313–318. https://doi.org/10.1016/J.Eng.2016.03.004.

    Article  Google Scholar 

  8. Bosma, R. H., & Verdegem, M. C. J. (2011). Sustainable aquaculture in ponds: Principles, practices and limits. Livestock Science,139(1–2), 58–68. https://doi.org/10.1016/j.livsci.2011.03.017.

    Article  Google Scholar 

  9. Boucher, H. W., & Corey, G. R. (2008). Epidemiology of methicillin-resistant Staphylococcus aureus. Clinical Infectious Diseases,46, S344–S349. https://doi.org/10.1086/533590.

    Article  Google Scholar 

  10. Brandt, C., Makarewicz, O., Fischer, T., Stein, C., Pfeifer, Y., Werner, G., et al. (2014). The bigger picture: The history of antibiotics and antimicrobial resistance displayed by scientometric data. International Journal of Antimicrobial Agents,44(5), 424–430. https://doi.org/10.1016/j.ijantimicag.2014.08.001.

    Article  Google Scholar 

  11. Brookes, J. D., Antenucci, J., Hipsey, M., Burch, M. D., Ashbolt, N. J., & Ferguson, C. (2004). Fate and transport of pathogens in lakes and reservoirs. Environment International,30(5), 741–759. https://doi.org/10.1016/j.envint.2003.11.006.

    Article  Google Scholar 

  12. Cael, B. B., Heathcote, A. J., & Seekell, D. A. (2017). The volume and mean depth of Earth’s lakes. Geophysical Research Letters,44(1), 209–218. https://doi.org/10.1002/2016GL071378.

    Article  Google Scholar 

  13. Canadian Dam Association. (2019). Dams in Canada. Quebec: Canadian Dam Association.

    Google Scholar 

  14. Cassini, A., Högberg, L. D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G. S., et al. (2018). Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. The Lancet Infectious Diseases,19, 56–66.

    Article  Google Scholar 

  15. Chen, H., Zhu, Q. A., Peng, C. H., Wu, N., Wang, Y. F., Fang, X. Q., et al. (2013). Methane emissions from rice paddies natural wetlands, lakes in China: Synthesis new estimate. Global Change Biology,19(1), 19–32. https://doi.org/10.1111/gcb.12034.

    Article  Google Scholar 

  16. Cole, J. J., & Caraco, N. F. (2001). Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism. Marine & Freshwater Research,52(1), 101–110. https://doi.org/10.1071/Mf00084.

    Article  Google Scholar 

  17. Craun, G. F., Calderon, R. L., & Craun, M. F. (2005). Outbreaks associated with recreational water in the United States. International Journal of Environmental Health Research,15(4), 243–262. https://doi.org/10.1080/09603120500155716.

    Article  Google Scholar 

  18. Demarty, M., & Bastien, J. (2011). GHG emissions from hydroelectric reservoirs in tropical and equatorial regions: Review of 20 years of CH4 emission measurements. Energy Policy,39(7), 4197–4206. https://doi.org/10.1016/j.enpol.2011.04.033.

    Article  Google Scholar 

  19. Ding, L. Y., Chen, L. Q., Ding, C. Z., & Tao, J. (2019). Global trends in dam removal and related research: A systematic review based on associated datasets and bibliometric analysis. Chinese Geographical Science,29(1), 1–12. https://doi.org/10.1007/s11769-018-1009-8.

    Article  Google Scholar 

  20. Downing, J. A. (2010). Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica,29(1), 9–23.

    Google Scholar 

  21. Downing, J. A., Prairie, Y. T., Cole, J. J., Duarte, C. M., Tranvik, L. J., Striegl, R. G., et al. (2006). The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography,51(5), 2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388.

    Article  Google Scholar 

  22. Emmer, A. (2018). GLOFs in the WOS: Bibliometrics, geographies and global trends of research on glacial lake outburst floods (Web of Science, 1979–2016). Natural Hazards and Earth System Sciences,18(3), 813–827. https://doi.org/10.5194/nhess-18-813-2018.

    Article  Google Scholar 

  23. Falconer, I. R. (2005). Is there a human health hazard from microcystins in the drinking water supply? Acta Hydrochimica et Hydrobiologica,33(1), 64–71. https://doi.org/10.1002/aheh.200300551.

    Article  Google Scholar 

  24. Falconer, I. R., & Humpage, A. R. (2005). Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. International Journal of Environmental Research and Public Health,2(1), 43–50.

    Article  Google Scholar 

  25. FAO. (2009). The state of world fisheries and aquaculture 2008. Rome: FAO.

    Google Scholar 

  26. Fearnside, P. M. (2016). Greenhouse gas emissions from Brazil’s Amazonian hydroelectric dams. Environmental Research Letters. https://doi.org/10.1088/1748-9326/11/1/011002.

    Article  Google Scholar 

  27. Federal Emergency Management Agency. (2016). The national dam safety program biennial report to the United States congress, fiscal years 2014 to 2015.

  28. Fuggle, R., & Smith, T. (2000). Large dams in water and energy resource development in The People’s Republic of China (PRC). Country review paper prepared as an input to the World Commission on Dams, Cape Town.

  29. Giguet-Covex, C., Arnaud, F., Poulenard, J., Enters, D., Reyss, J. L., Millet, L., et al. (2010). Sedimentological and geochemical records of past trophic state and hypolimnetic anoxia in large, hard-water Lake Bourget, French Alps. Journal of Paleolimnology,43(1), 171–190. https://doi.org/10.1007/s10933-009-9324-9.

    Article  Google Scholar 

  30. Glaz, P., Bartosiewicz, M., Laurion, I., Reichwaldt, E. S., Maranger, R., & Ghadouani, A. (2016). Greenhouse gas emissions from waste stabilisation ponds in Western Australia and Quebec (Canada). Water Research,101, 64–74. https://doi.org/10.1016/j.watres.2016.05.060.

    Article  Google Scholar 

  31. Hassan, S. U., Haddawy, P., & Zhu, J. (2014). A bibliometric study of the world’s research activity in sustainable development and its sub-areas using scientific literature. Scientometrics,99(2), 549–579. https://doi.org/10.1007/s11192-013-1193-3.

    Article  Google Scholar 

  32. Hauer, C., Siviglia, A., & Zolezzi, G. (2017). Hydropeaking in regulated rivers—From process understanding to design of mitigation measures. Science of the Total Environment,579, 22–26. https://doi.org/10.1016/j.scitotenv.2016.11.028.

    Article  Google Scholar 

  33. Hernandez-Paniagua, I. Y., Ramirez-Vargas, R., Ramos-Gomez, M. S., Dendooven, L., Avelar-Gonzalez, F. J., & Thalasso, F. (2014). Greenhouse gas emissions from stabilization ponds in subtropical climate. Environmental Technology,35(6), 727–734. https://doi.org/10.1080/09593330.2013.848910.

    Article  Google Scholar 

  34. Ho, L. T., Alvarado, A., Larriva, J., Pompeu, C., & Goethals, P. (2019). An integrated mechanistic modeling of a facultative pond: Parameter estimation and uncertainty analysis. Water Research,151, 170–182. https://doi.org/10.1016/j.watres.2018.12.018.

    Article  Google Scholar 

  35. Ho, L. T., & Goethals, P. L. M. (2019). Opportunities and challenges for the sustainability of lakes and reservoirs in relation to the sustainable development goals (SDGs). Water,11(7), 1462.

    Article  Google Scholar 

  36. Ho, L., Van Echelpoel, W., Charalambous, P., Gordillo, A., Thas, O., & Goethals, P. (2018). Statistically-based comparison of the removal efficiencies and resilience capacities between conventional and natural wastewater treatment systems: A peak load scenario. Water,10(3), 328.

    Article  Google Scholar 

  37. Ho, L. T., Van Echelpoel, W., & Goethals, P. L. M. (2017). Design of waste stabilization pond systems: A review. Water Research,123, 236–248. https://doi.org/10.1016/j.watres.2017.06.071.

    Article  Google Scholar 

  38. Huang, J. C., Zhang, Y. J., Arhonditsis, G. B., Gao, J. F., Chen, Q. W., Wu, N. C., et al. (2019). How successful are the restoration efforts of China’s lakes and reservoirs? Environment International,123, 96–103. https://doi.org/10.1016/j.envint.2018.11.048.

    Article  Google Scholar 

  39. Huang, J. C., Zhang, Y. J., Huang, Q., & Gao, J. F. (2018). When and where to reduce nutrient for controlling harmful algal blooms in large eutrophic lake Chaohu, China? Ecological Indicators,89, 808–817. https://doi.org/10.1016/j.ecolind.2018.01.056.

    Article  Google Scholar 

  40. IHA. (2018). Hydropower sustainability guidelines. London: I. H. Association.

    Google Scholar 

  41. Jaric, I., Cvijanovic, G., Knezevic-Jaric, J., & Lenhardt, M. (2012). Trends in fisheries science from 2000 to 2009: A bibliometric study. Reviews in Fisheries Science,20(2), 70–79. https://doi.org/10.1080/10641262.2012.659775.

    Article  Google Scholar 

  42. Jenny, J. P., Arnaud, F., Dorioz, J. M., Covex, C. G., Frossard, V., Sabatier, P., et al. (2013). A spatiotemporal investigation of varved sediments highlights the dynamics of hypolimnetic hypoxia in a large hard-water lake over the last 150 years. Limnology and Oceanography,58(4), 1395–1408. https://doi.org/10.4319/lo.2013.58.4.1395.

    Article  Google Scholar 

  43. Jia, P. Q., Zhang, W. B., & Liu, Q. G. (2013). Lake fisheries in China: Challenges and opportunities. Fisheries Research,140, 66–72. https://doi.org/10.1016/j.fishres.2012.12.007.

    Article  Google Scholar 

  44. Jiang, H. C., Qiang, M. S., & Lin, P. (2016). A topic modeling based bibliometric exploration of hydropower research. Renewable and Sustainable Energy Reviews,57, 226–237. https://doi.org/10.1016/j.rser.2015.12.194.

    Article  Google Scholar 

  45. Jørgensen, S. E. (2005). Lake and reservoir management. Amsterdam: Elsevier.

    Google Scholar 

  46. Konstantinou, I. K., Hela, D. G., & Albanis, T. A. (2006). The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels. Environmental Pollution,141(3), 555–570. https://doi.org/10.1016/j.envpol.2005.07.024.

    Article  Google Scholar 

  47. Kurmis, A. P. (2003). Understanding the limitations of the journal impact factor. Journal of Bone and Joint Surgery-American,85A(12), 2449–2454. https://doi.org/10.2106/00004623-200312000-00028.

    Article  Google Scholar 

  48. Lauri, H., de Moel, H., Ward, P. J., Rasanen, T. A., Keskinen, M., & Kummu, M. (2012). Future changes in Mekong River hydrology: Impact of climate change and reservoir operation on discharge. Hydrology and Earth System Sciences,16(12), 4603–4619. https://doi.org/10.5194/hess-16-4603-2012.

    Article  Google Scholar 

  49. Lees, A. C., Peres, C. A., Fearnside, P. M., Schneider, M., & Zuanon, J. A. S. (2016). Hydropower and the future of Amazonian biodiversity. Biodiversity and Conservation,25(3), 451–466. https://doi.org/10.1007/s10531-016-1072-3.

    Article  Google Scholar 

  50. Lehner, B., & Doll, P. (2004). Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology,296(1–4), 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028.

    Article  Google Scholar 

  51. Lehner, B., Liermann, C. R., Revenga, C., Vorosmarty, C., Fekete, B., Crouzet, P., et al. (2011a). High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment,9(9), 494–502. https://doi.org/10.1890/100125.

    Article  Google Scholar 

  52. Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., et al. (2011b). Global reservoir and dam (grand) database (p. 1). Version: Technical Documentation.

    Google Scholar 

  53. Li, F., Huang, J. H., Zeng, G. M., Yuan, X. Z., Li, X. D., Liang, J., et al. (2013). Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. Journal of Geochemical Exploration,132, 75–83. https://doi.org/10.1016/j.gexplo.2013.05.007.

    Article  Google Scholar 

  54. Liu, X. J., Zhang, L. A., & Hong, S. (2011). Global biodiversity research during 1900–2009: A bibliometric analysis. Biodiversity and Conservation,20(4), 807–826. https://doi.org/10.1007/s10531-010-9981-z.

    Article  Google Scholar 

  55. Ma, R., Duan, H., Hu, C., Feng, X., Li, A., Ju, W., et al. (2010). A half-century of changes in China’s lakes: Global warming or human influence? Geophysical Research Letters,37(24), 1. https://doi.org/10.1029/2010gl045514.

    Article  Google Scholar 

  56. Mailman, M., Stepnuk, L., Cicek, N., & Bodaly, R. A. (2006). Strategies to lower methyl mercury concentrations in hydroelectric reservoirs and lakes: A review. Science of the Total Environment,368(1), 224–235. https://doi.org/10.1016/j.scitotenv.2005.09.041.

    Article  Google Scholar 

  57. Mara, D. D. (2009). Waste stabilization ponds: Past, present and future. Desalination and Water Treatment,4(1–3), 85–88.

    Article  Google Scholar 

  58. Matveyev, A. N., & Samusenok, V. P. (2015). The fishes and fishery in Lake Baikal. Aquatic Ecosystem Health & Management,18(2), 134–148. https://doi.org/10.1080/14634988.2015.1028868.

    Article  Google Scholar 

  59. McCallen, E., Knott, J., Nunez-Mir, G., Taylor, B., Jo, I., & Fei, S. L. (2019). Trends in ecology: Shifts in ecological research themes over the past four decades. Frontiers in Ecology and the Environment,17(2), 109–116. https://doi.org/10.1002/fee.1993.

    Article  Google Scholar 

  60. McCreesh, N., & Booth, M. (2013). Challenges in predicting the effects of climate change on Schistosoma mansoni and Schistosoma haematobium transmission potential. Trends in Parasitology,29(11), 548–555. https://doi.org/10.1016/j.pt.2013.08.007.

    Article  Google Scholar 

  61. McCreesh, N., Nikulin, G., & Booth, M. (2015). Predicting the effects of climate change on Schistosoma mansoni transmission in eastern Africa. Parasites & Vectors. https://doi.org/10.1186/s13071-014-0617-0.

    Article  Google Scholar 

  62. McDonald, K., Bosshard, P., & Brewer, N. (2009). Exporting dams: China’s hydropower industry goes global. Journal of Environmental Management,90, S294–S302. https://doi.org/10.1016/j.jenvman.2008.07.023.

    Article  Google Scholar 

  63. Minns, C. K. (2014). Management of Great Lakes fisheries: Progressions and lessons. Aquatic Ecosystem Health & Management,17(4), 382–393. https://doi.org/10.1080/14634988.2014.967163.

    Article  Google Scholar 

  64. Mooij, W. M., Hulsmann, S., Domis, L. N. D., Nolet, B. A., Bodelier, P. L. E., Boers, P. C. M., et al. (2005). The impact of climate change on lakes in the Netherlands: A review. Aquatic Ecology,39(4), 381–400. https://doi.org/10.1007/s10452-005-9008-0.

    Article  Google Scholar 

  65. Musenze, R. S., Werner, U., Grinham, A., Udy, J., & Yuan, Z. G. (2014). Methane and nitrous oxide emissions from a subtropical estuary (the Brisbane River estuary, Australia). Science of the Total Environment,472, 719–729. https://doi.org/10.1016/j.scitotenv.2013.11.085.

    Article  Google Scholar 

  66. National Academy of Sciences. (1969). Eutrophication: Causes, consequences, correctives: Proceedings of a symposium. Washington: National Academy of Sciences.

    Google Scholar 

  67. Nelson, K. L., Cisneros, B. J., Tchobanoglous, G., & Darby, J. L. (2004). Sludge accumulation, characteristics, and pathogen inactivation in four primary waste stabilization ponds in central Mexico. Water Research,38(1), 111–127. https://doi.org/10.1016/j.watres.2003.09.013.

    Article  Google Scholar 

  68. Nguyen, T. H. T., Everaert, G., Boets, P., Forio, M. A. E., Bennetsen, E., Volk, M., et al. (2018). Modelling tools to analyze and assess the ecological impact of hydropower dams. Water. https://doi.org/10.3390/w10030259.

    Article  Google Scholar 

  69. Nikolic, N., Bagliniere, J. L., Rigaud, C., Gardes, C., Masquilier, M. L., & Taverny, C. (2011). Bibliometric analysis of diadromous fish research from 1970s to 2010: A case study of seven species. Scientometrics,88(3), 929–947. https://doi.org/10.1007/s11192-011-0422-x.

    Article  Google Scholar 

  70. OECD. (2017). OECD science, technology and industry scoreboard 2017. Paris: OECD.

    Google Scholar 

  71. Ofoezie, I. E. (2002). Human health and sustainable water resources development in Nigeria: Schistosomiasis inartificial lakes. Natural Resources Forum,26(2), 150–160. https://doi.org/10.1111/1477-8947.00015.

    Article  Google Scholar 

  72. Okeke, I. N., Klugman, K. P., Bhutta, Z. A., Duse, A. G., Jenkins, P., O’Brien, T. F., et al. (2005a). Antimicrobial resistance in developing countries. Part II: Strategies for containment. Lancet Infectious Diseases,5(9), 568–580. https://doi.org/10.1016/s1473-3099(05)70217-6.

    Article  Google Scholar 

  73. Okeke, I. N., Laxminarayan, R., Bhutta, Z. A., Duse, A. G., Jenkins, P., O’Brien, T. F., et al. (2005b). Antimicrobial resistance in developing countries. Part I: Recent trends and current status. Lancet Infectious Diseases,5(8), 481–493. https://doi.org/10.1016/s1473-3099(05)70189-4.

    Article  Google Scholar 

  74. Orr, S., Pittock, J., Chapagain, A., & Dumaresq, D. (2012). Dams on the Mekong River: Lost fish protein and the implications for land and water resources. Global Environmental Change-Human and Policy Dimensions,22(4), 925–932. https://doi.org/10.1016/j.gloenvcha.2012.06.002.

    Article  Google Scholar 

  75. Pachauri, R. K., & Meyer, L. (2015). Climate change 2014: Synthesis report. Intergovernmental panel on climate change.

  76. Porro, J., Bellandi, G., Rodriguez-Roda, I., Deeke, A., Weijers, S., Vanrolleghem, P., et al. (2017). Developing an artificial intelligence-based WRRF nitrous oxide mitigation road map: The Eindhoven N2O mitigation case study. Water Environment Federation,2017(13), 1703–1715.

    Article  Google Scholar 

  77. Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation,25(4), 348–349.

    Google Scholar 

  78. Qian, F., He, M. C., Song, Y. H., Tysklind, M., & Wu, J. Y. (2015). A bibliometric analysis of global research progress on pharmaceutical wastewater treatment during 1994–2013. Environmental Earth Sciences,73(9), 4995–5005. https://doi.org/10.1007/s12665-015-4183-3.

    Article  Google Scholar 

  79. Qin, B. Q., Zhu, G. W., Gao, G., Zhang, Y. L., Li, W., Paerl, H. W., et al. (2010). A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environmental Management,45(1), 105–112. https://doi.org/10.1007/s00267-009-9393-6.

    Article  Google Scholar 

  80. R Core Team. (2014). R: A language and environment for statistical computing. Vienna, Austria. ISBN 3-900051-07-0.

  81. Ragush, C. M., Schmidt, J. J., Krkosek, W. H., Gagnon, G. A., Truelstrup-Hansen, L., & Jamieson, R. C. (2015). Performance of municipal waste stabilization ponds in the Canadian Arctic. Ecological Engineering,83, 413–421. https://doi.org/10.1016/j.ecoleng.2015.07.008.

    Article  Google Scholar 

  82. Rasanen, T. A., Varis, O., Scherer, L., & Kummu, M. (2018). Greenhouse gas emissions of hydropower in the Mekong River Basin. Environmental Research Letters,13(3), 1. https://doi.org/10.1088/1748-9326/aaa817.

    Article  Google Scholar 

  83. Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., et al. (2013). Global carbon dioxide emissions from inland waters. Nature,503(7476), 355–359. https://doi.org/10.1038/nature12760.

    Article  Google Scholar 

  84. Reddy, M. J., & Kumar, D. N. (2006). Optimal reservoir operation using multi-objective evolutionary algorithm. Water Resources Management,20(6), 861–878. https://doi.org/10.1007/s11269-005-9011-1.

    Article  Google Scholar 

  85. Reynaud, A., & Lanzanova, D. (2017). A global meta-analysis of the value of ecosystem services provided by lakes. Ecological Economics,137, 184–194. https://doi.org/10.1016/j.ecolecon.2017.03.001.

    Article  Google Scholar 

  86. Sampantamit, T., Ho, L., Van Echelpoel, W., Lachat, C., & Goethals, P. (2020). Links and trade-offs between fisheries and environmental protection in relation to the sustainable development goals in Thailand. Water,12(2), 399.

    Article  Google Scholar 

  87. Schallenberg, M., de Winton, M. D., Verburg, P., Kelly, D. J., Hamill, K. D., & Hamilton, D. P. (2013). Ecosystem services of lakes. In J. Dymond (Ed.), Ecosystem services in New Zealand (pp. 203–225). Lincoln: Manaaki whenua press, landcare research.

  88. Seyfried, P. L., Tobin, R. S., Brown, N. E., & Ness, P. F. (1985). A prospective-study of swimming-related illness. 2. Morbidity and the microbiological quality of water. American Journal of Public Health,75(9), 1071–1075. https://doi.org/10.2105/ajph.75.9.1071.

    Article  Google Scholar 

  89. Sierszen, M. E., Morrice, J. A., Trebitz, A. S., & Hoffman, J. C. (2012). A review of selected ecosystem services provided by coastal wetlands of the Laurentian Great Lakes. Aquatic Ecosystem Health & Management,15(1), 92–106. https://doi.org/10.1080/14634988.2011.624970.

    Article  Google Scholar 

  90. Sinclair, R. G., Jones, E. L., & Gerba, C. P. (2009). Viruses in recreational water-borne disease outbreaks: A review. Journal of Applied Microbiology,107(6), 1769–1780. https://doi.org/10.1111/j.1365-2672.2009.04367.x.

    Article  Google Scholar 

  91. Sobek, S., Algesten, G., Bergstrom, A. K., Jansson, M., & Tranvik, L. J. (2003). The catchment and climate regulation of pCO(2) in boreal lakes. Global Change Biology,9(4), 630–641. https://doi.org/10.1046/j.1365-2486.2003.00619.x.

    Article  Google Scholar 

  92. Stadmark, J., & Leonardson, L. (2005). Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecological Engineering,25(5), 542–551. https://doi.org/10.1016/j.ecoleng.2005.07.004.

    Article  Google Scholar 

  93. Stone, R. (2011). The legacy of the three gorges dam. Science,333(6044), 817. https://doi.org/10.1126/science.333.6044.817.

    Article  Google Scholar 

  94. Sweileh, W. M., Zyoud, S. H., Al-Jabi, S. W., Sawalha, A. F., & Shraim, N. Y. (2016). Drinking and recreational water-related diseases: A bibliometric analysis (1980–2015). Annals of Occupational and Environmental Medicine. https://doi.org/10.1186/s40557-016-0128-x.

    Article  Google Scholar 

  95. Tardy, C. (2004). The role of English in scientific communication: Lingua franca or Tyrannosaurus rex? Journal of English for Academic Purposes,3(3), 247–269. https://doi.org/10.1016/j.jeap.2003.10.001.

    Article  Google Scholar 

  96. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Experientia Supplementum,2012(101), 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6.

    Article  Google Scholar 

  97. Thu, P. M., & Populus, J. (2007). Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh, Vietnam. Estuarine, Coastal and Shelf Science,71(1), 98–109. https://doi.org/10.1016/j.ecss.2006.08.007.

    Article  Google Scholar 

  98. Tong, Y. D., Zhang, W., Wang, X. J., Couture, R. M., Larssen, T., Zhao, Y., et al. (2017). Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006. Nature Geoscience,10(7), 507. https://doi.org/10.1038/Ngeo2967.

    Article  Google Scholar 

  99. Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., et al. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography,54(6), 2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298.

    Article  Google Scholar 

  100. Turolla, A., Cattaneo, M., Marazzi, F., Mezzanotte, V., & Antonelli, M. (2018). Antibiotic resistant bacteria in urban sewage: Role of full-scale wastewater treatment plants on environmental spreading. Chemosphere,191, 761–769. https://doi.org/10.1016/j.chemosphere.2017.10.099.

    Article  Google Scholar 

  101. Urban, F., Siciliano, G., & Nordensvard, J. (2018). China’s dam-builders: Their role in transboundary river management in South-East Asia. International Journal of Water Resources Development,34(5), 747–770. https://doi.org/10.1080/07900627.2017.1329138.

    Article  Google Scholar 

  102. US EPA. (2011). Principles of design and operations of wastewater treatment pond systems for plant operators, engineers, and managers. Washington: United States Environmental Protection Agency, Office of Research and Development.

    Google Scholar 

  103. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics,84(2), 523–538. https://doi.org/10.1007/s11192-009-0146-3.

    Article  Google Scholar 

  104. Van Metre, P., Wilson, J. T., Fuller, C. C., Callender, E., & Mahler, B. (2004). ‘Collection, analysis, and age-dating of sediment cores from 56 U.S. lakes and reservoirs sampled by the U.S. Geological Survey, 1992–2001. Scientific investigations report [Report]. http://pubs.er.usgs.gov/publication/sir20045184.

  105. Verdegem, M. C. J., & Bosma, R. H. (2009). Water withdrawal for brackish and inland aquaculture, and options to produce more fish in ponds with present water use. Water Policy,11, 52–68. https://doi.org/10.2166/wp.2009.003.

    Article  Google Scholar 

  106. Verpoorter, C., Kutser, T., Seekell, D. A., & Tranvik, L. J. (2014). A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters,41(18), 6396–6402. https://doi.org/10.1002/2014GL060641.

    Article  Google Scholar 

  107. Verpoorter, C., Kutser, T., & Tranvik, L. (2012). Automated mapping of water bodies using Landsat multispectral data. Limnology and Oceanography-Methods,10, 1037–1050. https://doi.org/10.4319/lom.2012.10.1037.

    Article  Google Scholar 

  108. Vincon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment,651, 2985–3001. https://doi.org/10.1016/j.scitotenv.2018.09.320.

    Article  Google Scholar 

  109. Wang, X. F., He, Y. X., Yuan, X. Z., Chen, H., Peng, C. H., Yue, J. S., et al. (2017). Greenhouse gases concentrations and fluxes from subtropical small reservoirs in relation with watershed urbanization. Atmospheric Environment,154, 225–235. https://doi.org/10.1016/j.atmosenv.2017.01.047.

    Article  Google Scholar 

  110. Wang, B., Pan, S. Y., Ke, R. Y., Wang, K., & Wei, Y. M. (2014). An overview of climate change vulnerability: A bibliometric analysis based on Web of Science database. Natural Hazards,74(3), 1649–1666. https://doi.org/10.1007/s11069-014-1260-y.

    Article  Google Scholar 

  111. WCD. (2000). Dams and development: A new framework for decision-making: The report of the world commission on dams. London: Earthscan.

    Google Scholar 

  112. Weyl, O. L. F., Ribbink, A. J., & Tweddle, D. (2010). Lake Malawi: Fishes, fisheries, biodiversity, health and habitat. Aquatic Ecosystem Health & Management,13(3), 241–254. https://doi.org/10.1080/14634988.2010.504695.

    Article  Google Scholar 

  113. WHO. (2006). Guidelines for the safe use of wastewater, excreta and greywater. Rome: World Health Organization.

    Google Scholar 

  114. WHO/FAO. (2010). Report of the joint expert consultation on the risks and benefits of fish consumption. Rome: Italy.

    Google Scholar 

  115. Wu, Z. S., Zhang, D. W., Cai, Y. J., Wang, X. L., Zhang, L., & Chen, Y. W. (2017). Water quality assessment based on the water quality index method in Lake Poyang: The largest freshwater lake in China. Scientific Reports. https://doi.org/10.1038/s41598-017-18285-y.

    Article  Google Scholar 

  116. Wurtsbaugh, W. A., Heredia, N. A., Laub, B. G., Meredith, C. S., Mohn, H. E., Null, S. E., et al. (2015). Approaches for studying fish production: Do river and lake researchers have different perspectives? Canadian Journal of Fisheries and Aquatic Sciences,72(1), 149–160. https://doi.org/10.1139/cjfas-2014-0210.

    Article  Google Scholar 

  117. Xu, L. K., Ouyang, W. Y., Qian, Y. Y., Su, C., Su, J. Q., & Chen, H. (2016). High-throughput profiling of antibiotic resistance genes in drinking water treatment plants and distribution systems. Environmental Pollution,213, 119–126. https://doi.org/10.1016/j.envpol.2016.02.013.

    Article  Google Scholar 

  118. Yang, X. K., & Lu, X. X. (2014). Drastic change in China’s lakes and reservoirs over the past decades. Scientific Reports. https://doi.org/10.1038/srep06041.

    Article  Google Scholar 

  119. Yang, W., Zhou, H. J., Si, F. Q., Liu, C., Wang, W., Sun, Y. W., et al. (2018). Bibliometric analysis of greenhouse gas research on a global scale from 2000 to 2014. Current Science,114(8), 1624–1631. https://doi.org/10.18520/cs/v114/i08/1624-1631.

    Article  Google Scholar 

  120. Yao, X. L., Zhang, Y. L., Zhang, L., & Zhou, Y. Q. (2018). A bibliometric review of nitrogen research in eutrophic lakes and reservoirs. Journal of Environmental Sciences,66, 274–285. https://doi.org/10.1016/j.jes.2016.10.022.

    Article  Google Scholar 

  121. Yu, Y., Wang, P. F., Wang, C., & Wang, X. (2018). Optimal reservoir operation using multi-objective evolutionary algorithms for potential estuarine eutrophication control. Journal of Environmental Management,223, 758–770. https://doi.org/10.1016/j.jenvman.2018.06.044.

    Article  Google Scholar 

  122. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences,77(1), 161–170. https://doi.org/10.1007/s00027-014-0377-0.

    Article  Google Scholar 

  123. Zhang, X., Luo, J. G., Sun, X. M., & Xie, J. C. (2019). Optimal reservoir flood operation using a decomposition-based multi-objective evolutionary algorithm. Engineering Optimization,51(1), 42–62. https://doi.org/10.1080/0305215x.2018.1439942.

    MathSciNet  Article  Google Scholar 

  124. Zhang, Y. L., Yao, X. L., & Qin, B. Q. (2016). A critical review of the development, current hotspots, and future directions of Lake Taihu research from the bibliometrics perspective. Environmental Science and Pollution Research,23(13), 12811–12821. https://doi.org/10.1007/s11356-016-6856-1.

    Article  Google Scholar 

  125. Zhang, H. N., Zhou, Y. F., Guo, S. Y., & Chang, W. S. (2015). Prevalence and characteristics of extended-spectrum beta-lactamase (ESBL)-producing enterobacteriaceae isolated from rural well water in Taian, China, 2014. Environmental Science and Pollution Research,22(15), 11488–11492. https://doi.org/10.1007/s11356-015-4387-9.

    Article  Google Scholar 

  126. Zhao, L., Deng, J. H., Sun, P. Z., Liu, J. S., Ji, Y., Nakada, N., et al. (2018). Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: Systematic review and bibliometric analysis. Science of the Total Environment,627, 1253–1263. https://doi.org/10.1016/j.scitotenv.2018.02.006.

    Article  Google Scholar 

  127. Zhao, X. J., Gao, B., Xu, D. Y., Gao, L., & Yin, S. H. (2017). Heavy metal pollution in sediments of the largest reservoir (three gorges reservoir) in China: A review. Environmental Science and Pollution Research,24(26), 20844–20858. https://doi.org/10.1007/s11356-017-9874-8.

    Article  Google Scholar 

  128. Ziv, G., Baran, E., Nam, S., Rodriguez-Iturbe, I., & Levin, S. A. (2012). Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences of the United States of America,109(15), 5609–5614. https://doi.org/10.1073/pnas.1201423109.

    Article  Google Scholar 

Download references

Acknowledgements

This research was performed in the context of the VLIR Ecuador Biodiversity Network project. This project was funded by the Vlaamse Interuniversitaire Raad-Universitaire Ontwikkelingssamenwerking (VLIR-UOS), which supports partnerships between universities and university colleges in Flanders and the South. Long Ho is supported by the special research fund (BOF) of Ghent University

Author information

Affiliations

Authors

Corresponding author

Correspondence to Long Ho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2390 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ho, L., Goethals, P. Research hotspots and current challenges of lakes and reservoirs: a bibliometric analysis. Scientometrics 124, 603–631 (2020). https://doi.org/10.1007/s11192-020-03453-1

Download citation

Keywords

  • Lakes
  • Reservoirs
  • Research hotspots
  • Scientometrics
  • Text mining