Skip to main content
Log in

Exploration of an interdisciplinary scientific landscape

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Patterns of interdisciplinarity in science can be quantified through complementary dimensions. This paper studies as a case study the scientific environment of a generalist journal in Geography, Cybergeo, in order to introduce a novel methodology combining citation network analysis and semantic analysis. We collect a large corpus of around 200,000 articles with their abstracts and the corresponding citation network that provides a first citation classification. Relevant keywords are extracted for each article through text-mining, allowing us to construct a semantic classification. We study the qualitative patterns of relations between endogenous disciplines within each classification, and finally show the complementarity of classifications and of their associated interdisciplinarity measures. The tools we develop accordingly are open and reusable for similar large scale studies of scientific environments. Our contribution therefore provides, besides the methodology, a new way to construct open databases and study journals for which data are difficult to obtain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. https://journals.openedition.org/cybergeo/.

  2. at https://github.com/JusteRaimbault/HyperNetwork.

  3. at http://dx.doi.org/10.7910/DVN/VU2XKT.

  4. or was just added as in the case of Web of Science, indexing Cybergeo since May 2016 only.

  5. or http://iscpif.fr/blog/2016/02/the-strange-arithmetic-of-google-scholars.

References

  • Akerlof, G. A., & Michaillat, P. (2018). Persistence of false paradigms in low-power sciences. Proceedings of the National Academy of Sciences, 115(52), 13,228–13,233.

    Article  Google Scholar 

  • Austin, T. R., Rauch, A., Blau, H., Yudice, G., van Den Berg, S., Robinson, L. S., et al. (1996). Defining interdisciplinarity. Publications of the modern language association of America, 111(2), 271–282.

    Article  Google Scholar 

  • Bais, S. (2010). In praise of science: Curiosity, understanding, and progress. Cambridge: MIT Press.

    Google Scholar 

  • Baldwin, T., & Lui, M. (2010). Language identification: The long and the short of the matter. In Human language technologies: The 2010 annual conference of the North American chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp 229–237.

  • Banos, A. (2013). Pour des pratiques de modélisation et de simulation libérées en géographies et shs. HDR Université Paris 1.

  • Banos, A., Chasset, P. O., Commenges, H., Cottineau, C., Pumain, D., & Raimbault, J. (2018). A spatialised bibliometrics approach of a scientific journal production. arXiv preprint arXiv:180807282.

  • Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512. https://doi.org/10.1126/science.286.5439.509, URL http://science.sciencemag.org/content/286/5439/509.

  • Battiston, F., Iacovacci, J., Nicosia, V., Bianconi, G., & Latora, V. (2015). Emergence of multiplex communities in collaboration networks. ArXiv e-prints arXiv:1506.01280.

  • Bergeaud, A., Potiron, Y., & Raimbault, J. (2017). Classifying patents based on their semantic content. PLoS ONE, 12(4), e0176,310.

    Article  Google Scholar 

  • Bird, S. (2006). Nltk: The natural language toolkit. In Proceedings of the COLING/ACL on interactive presentation sessions, Association for Computational Linguistics (pp 69–72).

  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: Theory and experiment, 10, P10,008.

    Article  Google Scholar 

  • Bohannon, J. (2014). Scientific publishing. Google Scholar wins raves—But can it be trusted? Science (New York, NY), 343(6166), 14.

    Article  Google Scholar 

  • Bonaccorsi, A., & Vargas, J. (2010). Proliferation dynamics in new sciences. Research Policy, 39(8), 1034–1050.

    Article  Google Scholar 

  • Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255.

    Article  Google Scholar 

  • Börner, K., Glänzel, W., Scharnhorst, A., & Van den Besselaar, P. (2011). Modeling science: Studying the structure and dynamics of science. Scientometrics, 89(1), 347–348.

    Article  Google Scholar 

  • Börner, K., Klavans, R., Patek, M., Zoss, A. M., Biberstine, J. R., Light, R. P., et al. (2012). Design and update of a classification system: The ucsd map of science. PLoS ONE, 7(7), e39,464.

    Article  Google Scholar 

  • Bourgine, P., Chavalarias, D., & al. (2009). French roadmap for complex systems 2008–2009. ArXiv e-prints, arXiv:0907.2221.

  • Bouveyron, C., Latouche, P., & Zreik, R. (2018). The stochastic topic block model for the clustering of vertices in networks with textual edges. Statistics and Computing, 28(1), 11–31.

    Article  MathSciNet  MATH  Google Scholar 

  • Boyack, K. W. (2017). Thesaurus-based methods for mapping contents of publication sets. Scientometrics, 111(2), 1141–1155.

    Article  Google Scholar 

  • Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.

    Article  Google Scholar 

  • Boyack, K. W., Newman, D., Duhon, R. J., Klavans, R., Patek, M., Biberstine, J. R., et al. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PlOS ONE, 6(3), 1–11. https://doi.org/10.1371/journal.pone.0018029.

    Article  Google Scholar 

  • Bracken, L. J. (2016). Interdisciplinarity and geography. New York: Wiley.

    Google Scholar 

  • Brás, O. R., Cointet, J. P., Cambrosio, A., David, L., Nunes, J. A., Cardoso, F., et al. (2017). Oncology research in late twentieth century and turn of the century portugal: A scientometric approach to its institutional and semantic dimensions. Scientometrics, 113(2), 867–888.

    Article  Google Scholar 

  • Cardie, C., & Pierce, D. (1998). Error-driven pruning of treebank grammars for base noun phrase identification. In Proceedings of the 17th international conference on Computational linguistics-Volume 1, Association for Computational Linguistics (pp. 218–224).

  • Chavalarias, D., & Cointet, J. P. (2013). Phylomemetic patterns in science evolution—The rise and fall of scientific fields. PLoS ONE, 8(2), e54,847.

    Article  Google Scholar 

  • Chen, C. (2004). Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences, 101(suppl 1), 5303–5310.

    Article  Google Scholar 

  • Chen, C. (2006). Citespace ii: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for information Science and Technology, 57(3), 359–377.

    Article  Google Scholar 

  • Chen, S., Arsenault, C., & Larivière, V. (2015). Are top-cited papers more interdisciplinary? Journal of Informetrics, 9(4), 1034–1046. https://doi.org/10.1016/j.joi.2015.09.003, http://www.sciencedirect.com/science/article/pii/S1751157715300201.

  • Choi, J., & Hwang, Y. S. (2014). Patent keyword network analysis for improving technology development efficiency. Technological Forecasting and Social Change, 83, 170–182.

    Article  Google Scholar 

  • Cronin, B., & Sugimoto, C. R. (2014). Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact. Cambridge: MIT Press.

    Book  Google Scholar 

  • Dupuy, G., & Benguigui, L. G. (2015). Sciences urbaines: Interdisciplinarités passive, naïve, transitive, offensive. Métropoles, 16. https://journals.openedition.org/metropoles/5107.

  • Edmonds, B., Gilbert, N., Ahrweiler, P., & Scharnhorst, A. (2011). Simulating the social processes of science. Journal of Artificial Societies and Social Simulation, 14(4), 14.

    Article  Google Scholar 

  • Fecher, B., & Friesike, S. (2014). Open science: One term, five schools of thought. In S. Bartling & S. Friesike (Eds.), Opening science. Cham: Springer.

    Google Scholar 

  • Gaumont, N., Panahi, M., & Chavalarias, D. (2018). Reconstruction of the socio-semantic dynamics of political activist Twitter networks—Method and application to the 2017 French presidential election. PloS one, 13(9), e0201879.

    Article  Google Scholar 

  • Gerow, A., Hu, Y., Boyd-Graber, J., Blei, D. M., & Evans, J. A. (2018). Measuring discursive influence across scholarship. In Proceedings of the national academy of sciences (p. 201719792).

  • Gurciullo, S., Smallegan, M., Pereda, M., Battiston, F., Patania, A., Poledna, S., et al. (2015). Complex politics: A quantitative semantic and topological analysis of UK house of commons debates. ArXiv e-prints, arXiv:1510.03797.

  • Hall, K. L., Stokols, D., Moser, R. P., Taylor, B. K., Thornquist, M. D., Nebeling, L. C., et al. (2008). The collaboration readiness of transdisciplinary research teams and centers: Findings from the national cancer institute’s trec year-one evaluation study. American Journal of Preventive Medicine, 35(2), S161–S172.

    Article  Google Scholar 

  • Huutoniemi, K., Klein, J. T., Bruun, H., & Hukkinen, J. (2010). Analyzing interdisciplinarity: Typology and indicators. Research Policy, 39(1), 79–88.

    Article  Google Scholar 

  • Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). Forceatlas2, a continuous graph layout algorithm for handy network visualization designed for the gephi software. PLoS ONE, 9(6), e98679.

    Article  Google Scholar 

  • Kumar, N., & Srinathan, K. (2008). Automatic keyphrase extraction from scientific documents using n-gram filtration technique. In Proceedings of the eighth ACM symposium on Document engineering (pp 199–208). ACM.

  • Larivière, V., & Gingras, Y. (2010). On the relationship between interdisciplinarity and scientific impact. Journal of the Association for Information Science and Technology, 61(1), 126–131.

    Google Scholar 

  • Larivière, V., & Gingras, Y. (2014). Measuring interdisciplinarity. In B. Cronin & C. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (p. 187). Cambridge: MIT Press.

    Google Scholar 

  • Leydesdorff, L. (2007). Betweenness centrality as an indicator of the interdisciplinarity of scientific journals. Journal of the Association for Information Science and Technology, 58(9), 1303–1319.

    Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2009). A global map of science based on the isi subject categories. Journal of the American Society for Information Science and Technology, 60(2), 348–362.

    Article  Google Scholar 

  • Leydesdorff, L., & Rafols, I. (2011). Indicators of the interdisciplinarity of journals: Diversity, centrality, and citations. Journal of Informetrics, 5(1), 87–100.

    Article  Google Scholar 

  • Light, R. P., Polley, D. E., & Börner, K. (2014). Open data and open code for big science of science studies. Scientometrics, 101(2), 1535–1551.

    Article  Google Scholar 

  • Maisonobe, M. (2013). Diffusion et structuration spatiale d’une question de recherche en biologie moléculaire. Mappe Monde, 110(2), 13,202.

    Google Scholar 

  • Malliaros, F. D., & Vazirgiannis, M. (2013). Clustering and community detection in directed networks: A survey. Physics Reports, 533(4), 95–142.

    Article  MathSciNet  MATH  Google Scholar 

  • Mendeley (2015) Mendeley reference manager. http://www.mendeley.com/.

  • Moreno, Md C C, Auzinger, T., & Werthner, H. (2016). On the uncertainty of interdisciplinarity measurements due to incomplete bibliographic data. Scientometrics, 107(1), 213–232.

    Article  Google Scholar 

  • Mugabushaka, A. M., Kyriakou, A., & Papazoglou, T. (2016). Bibliometric indicators of interdisciplinarity: The potential of the leinster-cobbold diversity indices to study disciplinary diversity. Scientometrics, 107(2), 593–607.

    Article  Google Scholar 

  • Nature (2015). Interdisciplinarity, nature special issue. Nature, 525(7569), 289–418.

    Google Scholar 

  • Newman, M. (2014). Prediction of highly cited papers. EPL (Europhysics Letters), 105(2), 28,002.

    Article  Google Scholar 

  • Newman, M. E. (2003). The structure and function of complex networks. SIAM Review, 45(2), 167–256.

    Article  MathSciNet  MATH  Google Scholar 

  • Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences, 103(23), 8577–8582.

    Article  Google Scholar 

  • Nichols, L. G. (2014). A topic model approach to measuring interdisciplinarity at the national science foundation. Scientometrics, 100(3), 741–754.

    Article  MathSciNet  Google Scholar 

  • Noruzi, A. (2005). Google scholar: The new generation of citation indexes. Libri, 55(4), 170–180.

    Article  Google Scholar 

  • Omodei, E., De Domenico, M., & Arenas, A. (2017). Evaluating the impact of interdisciplinary research: A multilayer network approach. Network Science, 5(2), 235–246.

    Article  Google Scholar 

  • Palchykov, V., Gemmetto, V., Boyarsky, A., & Garlaschelli, D. (2016). Ground truth? Concept-based communities versus the external classification of physics manuscripts. EPJ Data Science, 5(1), 28.

    Article  Google Scholar 

  • Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.

    Article  Google Scholar 

  • Porter, A., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.

    Article  Google Scholar 

  • Pumain, D. (2005). Cumulativité des connaissances. Revue européenne des sciences sociales. European Journal of Social Sciences, 43(131), 5–12.

    Google Scholar 

  • Pumain, D. (2015). Adapting the model of scientific publishing. Cybergeo: European Journal of Geography. https://journals.openedition.org/cybergeo/26957.

  • Rafols, I., & Meyer, M. (2009). Diversity and network coherence as indicators of interdisciplinarity: Case studies in bionanoscience. Scientometrics, 82(2), 263–287.

    Article  Google Scholar 

  • Raimbault, J. (2016). Torpool v1.0, https://doi.org/10.5281/zenodo.53739.

  • Raimbault, J. (2017). An applied knowledge framework to study complex systems. In A. Chapoutout, D. Krob, A. Roussel & F. Stephan (Eds.), Complex systems design & management (pp. 31–45). Paris: CESAMES.

    Google Scholar 

  • Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B-Condensed Matter and Complex Systems, 4(2), 131–134.

    Article  Google Scholar 

  • Rinia, E., van Leeuwen, T., & van Raan, A. (2002). Impact measures of interdisciplinary research in physics. Scientometrics, 53(2), 241–248.

    Article  Google Scholar 

  • Rodríguez, J. M. (2017). Disciplinarity and interdisciplinarity in citation and reference dimensions: Knowledge importation and exportation taxonomy of journals. Scientometrics, 110(2), 617–642.

    Article  Google Scholar 

  • Roth, C., & Cointet, J. P. (2010). Social and semantic coevolution in knowledge networks. Social Networks, 32(1), 16–29.

    Article  Google Scholar 

  • Rouse, W. B., Lombardi, J. V., & Craig, D. D. (2018). Modeling research universities: Predicting probable futures of public vs. private and large vs. small research universities. Proceedings of the National Academy of Sciences, 115(50), 12,582–12,589.

    Article  Google Scholar 

  • Sarigöl, E., Pfitzner, R., Scholtes, I., Garas, A., & Schweitzer, F. (2014). Predicting scientific success based on coauthorship networks. EPJ Data Science, 3(1), 9.

    Article  Google Scholar 

  • Scharnhorst, A., Börner, K., & van den Besselaar, P. (2012). Models of science dynamics: Encounters between complexity theory and information sciences. Berlin: Springer.

    Book  Google Scholar 

  • Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In Proceedings of the international conference on new methods in language processing (Vol. 12, pp. 44–49). Citeseer.

  • Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2008). Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation, 28(11), 758–775.

    Article  Google Scholar 

  • Szell, M., Ma, Y., & Sinatra, R. (2018). A nobel opportunity for interdisciplinarity. Nature Physics, 14(11), 1075–1078.

    Article  Google Scholar 

  • Trajanovski, S., Martín-Hernández, J., Winterbach, W., & Van Mieghem, P. (2013). Robustness envelopes of networks. Journal of Complex Networks, 1(1), 44–62.

    Article  Google Scholar 

  • Vugteveen, P., Lenders, R., & Van Den Besselaar, P. (2014). The dynamics of interdisciplinary research fields: The case of river research. Scientometrics, 100(1), 73–96.

    Article  Google Scholar 

  • Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, K. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (idr): A review of the literature. Journal of Informetrics, 5(1), 14–26.

    Article  Google Scholar 

  • Wen, B., Horlings, E., van der Zouwen, M., & Van den Besselaar, P. (2017). Mapping science through bibliometric triangulation: An experimental approach applied to water research. Journal of the Association for Information Science and Technology, 68(3), 724–738.

    Article  Google Scholar 

  • West, G. (2017). Scale: The universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies. London: Penguin.

    Google Scholar 

  • Wicherts, J. M. (2016). Peer review quality and transparency of the peer-review process in open access and subscription journals. PLoS ONE, 11(1), e0147,913. https://doi.org/10.1371/journal.pone.0147913.

    Article  MathSciNet  Google Scholar 

  • Zhang, L., Janssens, F., Liang, L., & Glänzel, W. (2010). Journal cross-citation analysis for validation and improvement of journal-based subject classification in bibliometric research. Scientometrics, 82(3), 687–706.

    Article  Google Scholar 

  • Zhang, L., Rousseau, R., & Glänzel, W. (2016). Diversity of references as an indicator of the interdisciplinarity of journals: Taking similarity between subject fields into account. Journal of the Association for Information Science and Technology, 67(5), 1257–1265.

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the editorial board of Cybergeo, and more particularly Denise Pumain and Christine Kosmopoulos, for having offered the opportunity to work on that subject and provided the production database of the journal. The author thanks Denise Pumain for helping with expert geographical knowledge in the naming of communities. The author also thanks two anonymous reviewers which comments were of great value for the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juste Raimbault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raimbault, J. Exploration of an interdisciplinary scientific landscape. Scientometrics 119, 617–641 (2019). https://doi.org/10.1007/s11192-019-03090-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03090-3

Keywords

Navigation