Skip to main content
Log in

Examining the moderating effect of technology spillovers embedded in the intra- and inter-regional collaborative innovation networks of China

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Innovation network formulated by the collaborations between entities (firms, universities and research institutes) facilitates the technology spillovers, which usually act as a key factor that boosts indigenous innovation capability. This study analyzes the collaborative innovation network from both intra- and inter-regional dimensions. We use the Chinese biomedical patent co-inventing data between entities to construct the intra- and inter-regional collaborative innovation networks, and examine how they generate the spillover effect by moderating the relationship between R&D input and output, as well as how they moderate the technology spillovers from overseas countries. The empirical study shows that collaborative innovation network generates a significant moderating effect on the relationship between R&D personnel and innovation output, while this effect is insignificant for R&D investment. In the intra-regional collaborative innovation network dimension, clustering coefficient and network density generate positive moderating effects by amplifying the positive relationship between R&D personnel and innovation output, network density also positively moderates the correlation between overseas technology spillover and innovation output; In the inter-regional dimension, only the clustering coefficient positively moderates the relationship between R&D personnel and innovation output. Our study is also relevant to policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The robustness section tried 4 and 6 years window lengths, which lead to generally the same empirical results.

References

  • Abramovitz, M. (1986). Catching up, forging ahead, and falling behind. Journal of Economic History, 46(2), 385–406.

    Article  Google Scholar 

  • Acharya, R. C., & Keller, W. (2009). Technology transfer through imports. Canadian Journal of Economics, 42(4), 1411–1448.

    Article  Google Scholar 

  • Ai, C. R., & Norton, E. C. (2003). Interaction terms in logit and probit models. Economics Letters, 80(1), 123–129.

    Article  Google Scholar 

  • Almeida, P., & Kogut, B. (1999). Localization of knowledge and the mobility of engineers in regional networks. Management Science, 45(7), 905–917.

    Article  Google Scholar 

  • Bereskin, F. L., Campbell, T. L., & Hsu, P. H. (2016). Corporate philanthropy, research networks, and collaborative innovation. Financial Management, 45(1), 175–206.

    Article  Google Scholar 

  • Blundell, R., Griffith, R., & Van Reenen, J. (1995). Dynamic count data models of technological innovation. Economic Journal, 105(429), 333–343.

    Article  Google Scholar 

  • Branstetter, L., & Chen, J. R. (2006). The impact of technology transfer and R & D on productivity growth in Taiwanese industry: Microeconometric analysis using plant and firm-level data. Journal of the Japanese and International Economies, 20(2), 177–192.

    Article  Google Scholar 

  • Chen, Z. F., & Guan, J. C. (2010). The impact of small world on innovation: An empirical study of 16 countries. Journal of Informetrics, 4(1), 97–106.

    Article  Google Scholar 

  • Chen, K. H., & Guan, J. C. (2011). Mapping the innovation production process from accumulative advantage to economic outcomes: A path modeling approach. Technovation, 31(7), 336–346.

    Article  Google Scholar 

  • Chen, X., & Sun, C. (2000). Technology transfer to China: Alliances of Chinese enterprises with western technology exporters. Technovation, 20(7), 353–362.

    Article  Google Scholar 

  • Cheung, K., & Lin, P. (2004). Spillover effects of FDI on innovation in China: Evidence from the provincial data. China Economic Review, 15(1), 25–44.

    Article  Google Scholar 

  • Coe, D. T., & Helpman, E. (1995). International R&D spillovers. European Economic Review, 39(5), 859–887.

    Article  Google Scholar 

  • Cohen, W. M., & Levinthal, D. A. (1989). Innovation and learning: The two faces of R&D. Economic Journal, 99(397), 569–596.

    Article  Google Scholar 

  • Cohen, W., & Levinthal, D. (1990). Absorptive capacity: A new perspective on learning and innovation. Administrative Science Quarterly, 35(1), 128–152.

    Article  Google Scholar 

  • Correa, C. (1998). Argentina’s national innovation system. International Journal of Technology Management, 15(6), 721–760.

    Article  Google Scholar 

  • Di Cagno, D., Fabrizi, A., Meliciani, V., & Wanzenbock, I. (2016). The impact of relational spillovers from joint research projects on knowledge creation across European regions. Technological Forecasting and Social Change, 108, 83–94.

    Article  Google Scholar 

  • Fan, P. P. (2014). Innovation in China. Journal of Economic Surveys, 28(4), 725–745.

    Article  Google Scholar 

  • Fleming, L., King, C. I. I. I., & Juda, A. I. (2007). Small worlds and regional innovation. Organization Science, 18(6), 938–954.

    Article  Google Scholar 

  • Fleming, L., & Marx, M. (2006). Managing creativity in small worlds. California Management Review, 48(4), 6–27.

    Article  Google Scholar 

  • Frietsch, R., & Grupp, H. (2006). There is a new man in town: The paradigm shift in optical technology. Technovation, 26(1), 463–472.

    Article  Google Scholar 

  • Furman, J. L., Porter, M. E., & Stern, S. (2002). The determinants of national innovative capacity. Research Policy, 31(6), 899–933.

    Article  Google Scholar 

  • Gao, X., Guan, J., & Rousseau, R. (2011). Mapping collaborative knowledge production in China using patent co-inventorships. Scientometrics, 88(2), 343–362.

    Article  Google Scholar 

  • Griliches, Z. (1990). Patent statistics as economic indicators: A survey. Journal of Economic Literature, 28(4), 1661–1707.

    Google Scholar 

  • Grossman, G., & Helpman, E. (1991). Innovation and growth in the world economy. Cambridge, MA: MIT Press.

    Google Scholar 

  • Guan, J. C., Zhang, J. J., & Yan, Y. (2015). The impact of multilevel networks on innovation. Research Policy, 44(3), 545–559.

    Article  Google Scholar 

  • Gulati, R. (1999). Network location and learning: The influence of network resources and firm capabilities on alliance formation. Strategic Management Journal, 20(5), 397–420.

    Article  Google Scholar 

  • Gulati, R., Sytch, M., & Tatarynowicz, A. (2012). The rise and fall of small worlds: Exploring the dynamics of social structure. Organization Science, 23(2), 449–471.

    Article  Google Scholar 

  • Hu, A. G. Z., & Jefferson, G. H. (2002). FDI impact and spillover: Evidence from China’s electronic and textile industries. World Economy, 25(8), 1063–1076.

    Article  Google Scholar 

  • Ivarsson, I., & Alvstam, C. G. (2005). Technology transfer from TNCs to local suppliers in developing countries: A study of AB Volvo’s truck and bus plants in Brazil, China, India, and Mexico. World Development, 33(8), 1325–1344.

    Article  Google Scholar 

  • Karaca-Mandic, P., Norton, E. C., & Dowd, B. (2012). Interaction terms in nonlinear models. Health Services Research, 47(1), 255–274.

    Article  Google Scholar 

  • Katrak, H. (1998). Economic analyses of industrial research institutes in developing countries: The Indian experience. Research Policy, 27(4), 337–347.

    Article  Google Scholar 

  • Katz, J. (2001). Structural reforms and technological behavior, the sources and nature of technological change in Latin America in the 1990s. Research Policy, 30(1), 1–19.

    Article  Google Scholar 

  • Keller, W. (2002). Geographic localization of international technology diffusion. American Economic Review, 92(1), 120–142.

    Article  Google Scholar 

  • Kotabe, M., Sahay, A., & Aulakh, P. S. (1996). Emerging role of technology licensing in the development of global product strategy: Conceptual framework and research propositions. Journal of Marketing, 60(1), 73–88.

    Article  Google Scholar 

  • Krätke, S. (2010). Regional knowledge networks: A network analysis approach to the interlinking of knowledge resources. European Urban and Regional Studies, 17(1), 83–97.

    Article  Google Scholar 

  • Lan, P., & Young, S. (1996). International technology transfer examined at technology component level: A case study in China. Technovation, 16(6), 277–286.

    Article  Google Scholar 

  • Leonard-Barton, D. (1992). Core capabilities and core rigidities: A paradox in managing new product development. Strategic Management Journal, 13, 111–125.

    Article  Google Scholar 

  • Liu, W. (1995). International technology transfer and development of technological capabilities: A theoretical framework. Technology in Society, 17(1), 103–120.

    Article  Google Scholar 

  • Liu, Z. Q. (2002). Foreign direct investment and technology spillover: Evidence from China. Journal of Comparative Economics, 30(3), 579–602.

    Article  Google Scholar 

  • Liu, X., & Wang, C. (2003). Does foreign direct investment facilitate techno- logical progress? Evidence from Chinese industries. Research Policy, 32(6), 945–953.

    Article  Google Scholar 

  • Lu, L. C., & Huang, R. (2012). Urban hierarchy of innovation capability and inter-city linkages of knowledge in post-reform China. Chinese Geographical Science, 22(5), 602–616.

    Article  Google Scholar 

  • Meyer, K. (2001). International business research in transition economies. In Thomas L. Brewer & Alan M. Rugman (Eds.), Oxford Handbook of International business (pp. 716–759). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Naoto, J., Zhang, X., & Haruna, S. (2015). Trade patterns and international technology spillovers: Evidence from patent citations. Review of World Economics, 151(4), 635–658.

    Article  Google Scholar 

  • Niosi, J., Hanel, P., & Fiset, L. (1995). Technology transfer to developing countries through engineering firms: The Canadian experience. World Development, 23(10), 1815–1824.

    Article  Google Scholar 

  • Saxenian, A. (1994). Regional advantage. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Schilling, M. A., & Phelps, C. C. (2007). Interfirm collaborative innovation networks: The impact of large-scale network structure on firm innovation. Management Science, 53(7), 1113–1126.

    Article  MATH  Google Scholar 

  • Schmoch, U. (2008). Concept of a technology classification for country comparisons. Report to the World Intellectual Property Organization (WIPO).

  • Shapiro, M. A., So, M., & Park, H. W. (2010). Quantifying the national innovation system: Inter-regional collaborative innovation networks in South Korea. Technology Analysis & Strategic Management, 22(7), 845–857.

    Article  Google Scholar 

  • Singh, J. (2005). Collaborative networks as determinants of knowledge spillover patterns. Management Science, 51(5), 756–770.

    Article  MATH  Google Scholar 

  • Sun, Y. F. (2002a). China’s national innovation system in transition. Eurasia Geography and Economics, 43(6), 476–492.

    Article  Google Scholar 

  • Sun, Y. F. (2002b). Sources of innovation in China’s manufacturing sector: Imported or developed in-house? Environment and Planning A, 34(6), 1059–1072.

    Article  Google Scholar 

  • Sun, Y. T., & Cao, C. (2015). Intra- and inter-regional research collaboration across organizational boundaries: Evolving patterns in China. Technological Forecasting and Social Change, 96, 215–231.

    Article  Google Scholar 

  • Sun, Y. F., & Du, D. B. (2010). Determinants of industrial innovation in China: Evidence from its recent economic census. Technovation, 30(9–10), 540–550.

    Article  Google Scholar 

  • Tian, X. (2007). Accounting for sources of FDI technology spillovers: Evidence from China. Journal of International Business Studies, 38(1), 147–159.

    Article  Google Scholar 

  • Verdolini, E., & Galeotti, M. (2011). At home and abroad: An empirical analysis of innovation and diffusion in energy technologies. Journal of Environmental Economics and Management, 61(2), 119–134.

    Article  Google Scholar 

  • Vishwasrao, S., Gupta, S., & Benchekroun, H. (2007). Optimum tariffs and patent length in a model of North–South technology transfer. International Review of Economics and Finance, 16(1), 1–14.

    Article  Google Scholar 

  • Wang, J., Baylis, K., & Mulder, P. (2015). Trade-facilitated technology spillovers in energy productivity convergence processes across EU countries. Energy Economics, 48, 253–264.

    Article  Google Scholar 

  • Wang, N., & Hagedoorn, J. (2014). The lag structure of the relationship between patenting and internal R&D revisited. Research Policy, 43(8), 1275–1285.

    Article  Google Scholar 

  • Winterscheid, B. C., & McNabb, S. (1994). Technology development and transfer across national and organizational borders: the case of AT&T network systems Europe. International Business Review, 3(4), 425–442.

    Article  Google Scholar 

  • Xu, B., & Wang, J. (1999). Capital goods trade and R&D spillovers in the OECD. Canadian Journal of Economics, 32(5), 1258–1274.

    Article  Google Scholar 

  • Yang, L., & Maskus, K. E. (2009). Intellectual property rights, technology transfer and exports in developing countries. Journal of Development Economics, 90(2), 231–236.

    Article  Google Scholar 

  • Young, S., & Lan, P. (1997). Technology transfer to China through foreign direct investment. Regional Studies, 31(7), 669–679.

    Article  Google Scholar 

  • Zhang, G. P., Duan, H. B., & Zhou, J. H. (2015). Small worldliness, Chinese culture and firm innovation performance: An empirical study based on patent collaboration data of China. Asian Journal of Technology Innovation, 23(2), 189–204.

    Article  Google Scholar 

  • Zhang, G. P., Duan, H. B., & Zhou, J. H. (2016). Investigating determinants of inter-regional technology transfer in China: A network analysis with provincial patent data. Review of Managerial Science, 10(2), 345–364.

    Article  Google Scholar 

  • Zhang, G. P., Guan, J. C., & Liu, X. L. (2014). The impact of small world on patent productivity in China. Scientometrics, 98(2), 945–960.

    Article  Google Scholar 

  • Zhang, G. P., & Zhou, J. H. (2016). The effects of forward and reverse engineering on firm innovation performance in the stages of technology catch-up: An empirical study of China. Technological Forecasting and Social Change, 104, 212–222.

    Article  Google Scholar 

  • Zhu, G. F., & Davidson Frame, J. (1987). Technology transfer within China. Journal of Technology Transfer, 11(2), 29–42.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by National Natural Science Foundation of China (71872169, 71810107004), National Social Science Foundation of China (15BGL027), University of Chinese Academy of Sciences (Y8540XX1P2), and Bureau of Planning and Strategy, Chinese Academy of Sciences (GHJ-ZLZX-2019-33-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gupeng Zhang.

Appendix

Appendix

See Table 6.

Table 6 Variable definition, measurement, data processing and resources

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhang, G. Examining the moderating effect of technology spillovers embedded in the intra- and inter-regional collaborative innovation networks of China. Scientometrics 119, 561–593 (2019). https://doi.org/10.1007/s11192-019-03084-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-019-03084-1

Keywords

Navigation