, Volume 116, Issue 3, pp 2097–2111 | Cite as

Author-weighted impact factor and reference return ratio: can we attain more equality among fields?

  • Tolga Yuret


Despite its problems, journal impact factor (JIF) is the most popular journal quality metric. In this paper, two simple adjustments of JIF are tested to see whether more equality among fields can be attained. In author-weighted impact factor (AWIF), the number of citations that a journal receive is divided by the number of authors in that journal. In reference return ratio (RRR), the number of citations that a journal receive is divided by the number of references in that journal. We compute JIF, AWIF and RRR of all 10,848 journals included in journal citation report 2012. Science journals outperform social science journals at JIF but social science journals outperform science journals at both AWIF and RRR. Highest level of equality between science and social science journals is attained when AWIF is used. These findings cannot be generalized when narrower subject categories are considered.


Field-neutrality Impact factor Cited-references Number of authors 


  1. Abramo, G., & D’Angelo, C. A. (2015). The relationship between the number of authors of a publication, its citations and the impact factor of the publishing journal: Evidence from Italy. Journal of Informetrics, 9(4), 746–761.CrossRefGoogle Scholar
  2. Ahlgren, P., Colliander, C., & Sjogarde, P. (2018). Exploring the relation between referencing practices and citation impact: A large-scale study based on Web of Science data. Journal of the Association for Information Science and Technology, 69(5), 728–743.CrossRefGoogle Scholar
  3. Althouse, B. M., West, J. D., Bergstrom, C., & Bergstrom, T. (2009). Differences in impact factor across fields and over time. Journal of the American Society for Information Science and Technology, 60(1), 27–34.CrossRefGoogle Scholar
  4. Archambault, E., & Lariviere, V. (2009). History of the journal impact factor: Contingencies and consequences. Scientometrics, 79(3), 635–649.CrossRefGoogle Scholar
  5. Castelvecchi, D. (2015) Physics paper sets record with more than 5,000 authors. Nature News (May 15).Google Scholar
  6. Didegah, F., & Thelwall, M. (2013). Which factors help authors produce the highest impact research? Collaboration, journal and document properties. Journal of Informetrics, 7(4), 861–873.CrossRefGoogle Scholar
  7. Franceschini, F., Galetto, M., Maisano, D., & Mastrogiacomo, L. (2012). The success-index: An alternative approach to the h-index for evaluating an individual’s research output. Scientometrics, 92(3), 621–641.CrossRefGoogle Scholar
  8. Harzing, A., Alakangas, S., & Adams, D. (2014). hIa: An individual annual h-index to accommodate disciplinary and career length differences. Scientometrics, 99(3), 811–821.CrossRefGoogle Scholar
  9. Johnston, D. M., Piatti, M., & Torgler, B. (2013). Citation success over time: Theory or empirics? Scientometrics, 95(3), 1023–1029.CrossRefGoogle Scholar
  10. King, C. (2012). Multiauthor papers: onward and upward. Sciencewatch newsletter.Google Scholar
  11. Kosmulski, M. (2011). Successful papers: A new idea in evaluation of scientific output. Journal of Informetrics, 5(3), 481–485.CrossRefGoogle Scholar
  12. Leydesdorff, L., & Bornmann, L. (2011). How fractional counting of citations affects the impact factor: Normalization in terms of differences in citation potentials among fields of science. Journal of the American Society for Informatıon Science and Technology, 62(2), 217–229.CrossRefGoogle Scholar
  13. Leydesdorff, L., & Opthof, T. (2010). Scopus’s source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations. Journal of the Amerıcan Society for Information Science and Technology, 61(11), 2365–2369.CrossRefGoogle Scholar
  14. Leydesdorff, L., & Opthof, T. (2011). Remaining problems with the “New Crown Indicator” (MNCS) of the CWTS. Journal of Informetrics, 5(1), 224–225.CrossRefGoogle Scholar
  15. Lundberg, J. (2007). Lifting the crown—Citation z-score. Journal of Informetrics, 1(2), 145–154.CrossRefGoogle Scholar
  16. Marx, W., & Bornmann, L. (2015). On the causes of subject-specific citation rates in Web of Science. Scientometrics, 102(2), 1823–1827.CrossRefGoogle Scholar
  17. Moed, H. F. (2010). Measuring contextual citation impact of scientific journals. Journal of Informetrics, 4(3), 265–277.CrossRefGoogle Scholar
  18. Nicolaisen, J., & Frandsen, T. F. (2008). The reference return ratio. Journal of Informetrics, 2(2), 128–135.CrossRefGoogle Scholar
  19. Podlubny, I. (2005). Comparison of scientific impact expressed by the number of citations in different fields of science. Scientometrics, 64(1), 95–99.CrossRefGoogle Scholar
  20. Radicchi, F., & Castellano, C. (2012). Testing the fairness of citation indicators for comparison across scientific domains: The case of fractional citation counts. Journal of Informetrics, 6(1), 121–130.CrossRefGoogle Scholar
  21. Ramirez, A. M., Garcia, A. O., & Del Rio, J. A. (2000). Renormalized impact factor. Scientometrics, 47(1), 3–9.CrossRefGoogle Scholar
  22. Rossner, M., Van Epps, H., & Hill, E. (2007). Show me the data. The Journal of Cell Biology, 179(6), 1091–1092.CrossRefGoogle Scholar
  23. Ruiz-Castillo, J., & Waltman, L. (2015). Field-normalized citation impact indicators using algorithmically constructed classification systems of science. Journal of Informetrics, 9(1), 102–117.CrossRefGoogle Scholar
  24. Sombatsompop, N., & Markpin, T. (2005). Making an equality of ISI impact factors for different subject fields. Journal of the American Society for Information Science and Technology, 56(7), 676–683.CrossRefGoogle Scholar
  25. Vinkler, P. (2009). Introducing the Current Contribution Index for characterizing the recent, relevant impact of journals. Scientometrics, 79(2), 409–420.CrossRefGoogle Scholar
  26. Waltman, L. (2016). A review of the literature on citation impact indicators. Journal of Informetrics, 10(2), 365–391.CrossRefGoogle Scholar
  27. Waltman, L., & van Eck, N. J. (2013). Source normalized indicators of citation impact: An overview of different approaches and an empirical comparison. Scientometrics, 96(3), 699–716.CrossRefGoogle Scholar
  28. Waltman, L., van Eck, N. J., van Leeuwen, T. N., Visser, M. S., & van Raan, A. F. J. (2011). Towards a new crown indicator: Some theoretical considerations. Journal of Informetrics, 5(1), 37–47.CrossRefGoogle Scholar
  29. Woolston, C. (2015) Fruit-fly paper has 1,000 authors. Nature News (May 13).Google Scholar
  30. Wutchy, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316, 1036–1038.CrossRefGoogle Scholar
  31. Yanovski, V. I. (1981). Citation analysis significance of scientific journals. Scientometrics, 3(3), 223–233.CrossRefGoogle Scholar
  32. Yuret, T. (2014). Why do economists publish less? Applied Economics Letters, 21(11), 760–762.CrossRefGoogle Scholar
  33. Yuret, T. (2015). Interfield comparison of academic output by using department level data. Scientometrics, 105(3), 1653–1664.CrossRefGoogle Scholar
  34. Zhang, Z., Cheng, Y., & Liu, N. C. (2014). Comparison of the effect of mean-based method and z-score for field normalization of citations at the level of Web of Science subject categories. Scientometrics, 101(3), 1679–1693.CrossRefGoogle Scholar
  35. Zitt, M., Ramanana-Rahary, S., & Bassecoulard, E. (2005). Relativity of citation performance and excellence measures: From cross-field to cross-scale effects of field-normalisation. Scientometrics, 63(2), 373–401.CrossRefGoogle Scholar
  36. Zitt, M., & Small, H. (2008). Modifying the journal impact factor by fractional citation weighting: The audience factor. Journal of the American Society for Information Science and Technology, 59(11), 1856–1860.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Economics, Faculty of ManagementIstanbul Technical UniversityMacka, IstanbulTurkey

Personalised recommendations