, Volume 115, Issue 3, pp 1549–1559 | Cite as

Global and Latin American scientific production related to pneumococcal vaccines

  • Randelys Molina CastroEmail author
  • Maria Victoria Guzmán Sánchez
  • Yaidelyn Macías Rivero
  • Romel Calero Ramos
  • Ivet Álvarez Díaz


The most effective way to fight against diseases caused by Streptococcus pneumoniae is prevention through vaccination. The present study analyzed global and Latin American scientific production related to pneumococcal vaccines, highlighting research topics. The global number of publications reached 5737 records from 1945 to 2015 and has increased over time since 1981. Greatest accelerated growth was found from 2000 to 2015, with 2015 as the most productive year. The publications of Latin American authors represented 3.7% of the total. Brazil, Argentina, and Mexico were the most prolific countries, with Brazil heading the list. Most of these articles were published in the scientific journal Vaccine. The topics most frequently covered in Latin American publications and their interrelationships were visualized using self-organized maps. The study showed increasing activity in scientific research on pneumococcal vaccines, with low visibility regarding the contribution made by Latin American countries. It also highlights the sources of publication, as well as the diversity and associations of sub themes found in the scientific literature.


Pneumococcal vaccines Pneumococcal conjugate vaccines Streptococcus pneumoniae Scientometrics Bibliometric indicators Latin America 



Funding for the project “Scientific - Technological Observatory on Vaccines (VaCyT)” was provided by the Pérez-Guerrero Trust Fund (PGTF) for South-South Cooperation—Reference Number INT/12/K15.


  1. Ballinger, M. N., & Standiford, T. J. (2010). Postinfluenza bacterial pneumonia: host defenses gone awry. Journal of Interferon and Cytokine Research, 30(9), 643–652.CrossRefGoogle Scholar
  2. Biblioteca de la Universidad de Sevilla. (2016). JCR Science (1º y 2º cuartil). Accessed 5 July 2016.
  3. Garg, K. C., Kumar, S., Madhavi, Y., & Bahl, M. (2009). Bibliometrics of global malaria vaccine research. Health Information & Libraries Journal, 26(1), 22–31.CrossRefGoogle Scholar
  4. Guevara, M., Ezpeleta, C., Gil-Setas, A., Torroba, L., Beristain, X., Aguinaga, A., et al. (2014). Reduced incidence of invasive pneumococcal disease after introduction of the 13-valent conjugate vaccine in Navarre, Spain, 2001–2013. Vaccine, 32(22), 2553–2562.CrossRefGoogle Scholar
  5. Guzman, M. V., Sanz, E., & Sotolongo, G. (1998). Bibliometric study on vaccines (1990–1995) part I: Scientific production in Iberian-American countries. Scientometrics, 43(2), 189–205.CrossRefGoogle Scholar
  6. Head, M. G., Fitchett, J. R., Newell, M.-L., Scott, J. A. G., Harris, J. N., Clarke, S. C., et al. (2015). Mapping pneumonia research: A systematic analysis of UK investments and published outputs 1997–2013. EBioMedicine, 2(9), 1193–1199.CrossRefGoogle Scholar
  7. Kohonen, T. (1998). The self-organizing map. Neurocomputing, 21(1), 1–6.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Leydesdorff, L., Comins, J. A., Sorensen, A. A., Bornmann, L., & Hellsten, I. (2016). Cited references and Medical Subject Headings (MeSH) as two different knowledge representations: clustering and mappings at the paper level. Scientometrics, 109(3), 2077–2091.CrossRefGoogle Scholar
  9. Lundberg, J., Fransson, A., Brommels, M., Skår, J., & Lundkvist, I. (2006). Is it better or just the same? Article identification strategies impact bibliometric assessments. Scientometrics, 66(1), 183–197.CrossRefGoogle Scholar
  10. Pleger, N. (2011). Bakterielle Meningitis (Undergraduate thesis). Berlin: Freie Universität Berlin.Google Scholar
  11. SCImago. (2017). SJR—SCImago Journal & Country Rank. Accessed 25 November 2016.
  12. Usuf, E., Bottomley, C., Adegbola, R. A., & Hall, A. (2014). Pneumococcal carriage in sub-Saharan Africa—A systematic review. PLoS One, 9(1), 1–13. Accessed 25 November 2016.
  13. van Hoek, A. J., Sheppard, C. L., Andrews, N. J., Waight, P. A., Slack, M. P., Harrison, T. G., et al. (2014). Pneumococcal carriage in children and adults two years after introduction of the thirteen valent pneumococcal conjugate vaccine in England. Vaccine, 32(34), 4349–4355.CrossRefGoogle Scholar
  14. Varsta, M., Heikkonen, J., Lampinen, J., & Millán, J. D. R. (2001). Temporal Kohonen map and the recurrent self-organizing map: Analytical and experimental comparison. Neural Processing Letters, 13(3), 237–251.CrossRefzbMATHGoogle Scholar
  15. Whitney, C. G., Goldblatt, D., & O’Brien, K. L. (2014). Dosing schedules for pneumococcal conjugate vaccine: considerations for policy makers. The Pediatric Infectious Disease Journal, 33(Suppl 2), 172–181.CrossRefGoogle Scholar
  16. World Health Organization. (2015). Pneumonia. Accessed 24 November 2016.
  17. Zhang, L., & Luan, R. (2009). Bibliometric analysis of literatures on the oral poliomyelitis attenuated live vaccine mass immunization campaign in China. Zhongguo yi miao he mian yi, 15(3), 251–254.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Randelys Molina Castro
    • 1
    Email author
  • Maria Victoria Guzmán Sánchez
    • 1
  • Yaidelyn Macías Rivero
    • 1
  • Romel Calero Ramos
    • 2
  • Ivet Álvarez Díaz
    • 1
  1. 1.Finlay Institute of VaccinesPlayaCuba
  2. 2.Center for Complexity Sciences (C3)National Autonomous University of Mexico (UNAM)CoyoacánMexico

Personalised recommendations