Scientometrics

, Volume 114, Issue 3, pp 883–904 | Cite as

Using acknowledgement data to characterize funding organizations by the types of research sponsored: the case of robotics research

Article

Abstract

Funded research has been linked to academic production and performance. While the presence of funding acknowledgements may serve as an indicator of quality to some extent, we still lack tools to evaluate whether funding agencies allocate resources to novel and innovative research rather than mature fields. We address this issue in the present study by using bibliometrics. In particular, we exploit the citation network properties of academic articles to classify specific research fields into four categories: change maker, breakthrough, incremental, and matured. We then use funding acknowledgement information to identify the sponsors involved in each research type to characterize funding agencies. We focus our analysis on the robotics field in order to reveal international trends of financial acknowledgements. We find that the incremental and matured research areas show the highest counts of funding acknowledgements. Moreover, although research funded by some agencies is mostly recognized as incremental-type research, those in other categories may perform better in terms of the number of citations. Additionally, we analyze the interest of selected funding agencies in granular subject categories. The characterization of funding agencies in this study may help policymakers and funding organizations assess or adjust their strategies, benchmark with other key players, and obtain an overview of local and global acknowledgement trends.

Keywords

Acknowledgement analysis Funding analysis Citation network Emerging technology Robotics 

Mathematics Subject Classification

62H25 91B82 

JEL Classification

C38 C81 D02 O32 

Notes

Acknowledgements

The authors thank Tiecheng Jin for collaborating in the name disambiguation task. Part of this research was supported by a scholarship from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

  1. Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94–111.  https://doi.org/10.1016/j.biosystemseng.2016.06.014.CrossRefGoogle Scholar
  2. Berg, J. M. (2008). A nobel lesson: The grant behind the prize. Science, 319(5865), 900–901.  https://doi.org/10.1126/science.319.5865.900d.CrossRefGoogle Scholar
  3. Boyack, K. W., & Börner, K. (2003). Indicator-assisted evaluation and funding of research: Visualizing the influence of grants on the number and citation counts of research papers. Journal of the American Society for Information Science and Technology, 54(5), 447–461.  https://doi.org/10.1002/asi.10230.CrossRefGoogle Scholar
  4. Boyack, K. W., & Jordan, P. (2011). Metrics associated with NIH funding: A high-level view. Journal of the American Medical Informatics Association: JAMIA, 18(4), 423–431.  https://doi.org/10.1136/amiajnl-2011-000213.CrossRefGoogle Scholar
  5. Braun, D. (1998). The role of funding agencies in the cognitive development of science. Research Policy, 27(8), 807–821.  https://doi.org/10.1016/S0048-7333(98)00092-4.CrossRefGoogle Scholar
  6. Caluwaerts, K., Despraz, J., Işçen, A., Sabelhaus, A. P., Bruce, J., Schrauwen, B., et al. (2014). Design and control of compliant tensegrity robots through simulation and hardware validation. Journal of the Royal Society, Interface, 11(8), 20140520.  https://doi.org/10.1098/rsif.2014.0520.CrossRefGoogle Scholar
  7. Cronin, B. (2001). Acknowledgement trends in the research literature of information science. Journal of Documentation, 57(3), 427–433.  https://doi.org/10.1108/EUM0000000007089.CrossRefGoogle Scholar
  8. Cronin, B., Mckenzie, G., & Stiffler, M. (1992). Patterns of acknowledgement. Journal of Documentation, 48(2), 107–122.  https://doi.org/10.1108/eb026893.CrossRefGoogle Scholar
  9. Cronin, B., & Shaw, D. (1999). Citation, funding acknowledgement and author nationality relationships in four information science journals. Journal of Documentation, 55(4), 402–408.  https://doi.org/10.1108/EUM0000000007153.CrossRefGoogle Scholar
  10. Fathinezhad, F., Derhami, V., & Rezaeian, M. (2016). Supervised fuzzy reinforcement learning for robot navigation. Applied Soft Computing, 40, 33–41.  https://doi.org/10.1016/j.asoc.2015.11.030.CrossRefGoogle Scholar
  11. Giles, C. L., & Councill, I. G. (2004). Who gets acknowledged: Measuring scientific contributions through automatic acknowledgment indexing. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17599–17604.  https://doi.org/10.1073/pnas.0407743101.CrossRefGoogle Scholar
  12. Gillet, R. (1991). Pitfalls in assessing research performance by grant income. Scientometrics, 22(2), 253–263.  https://doi.org/10.1007/BF02020000.CrossRefGoogle Scholar
  13. Glanzel, W., & Thijs, B. (2012). Using “core documents” for detecting and labelling new emerging topics. Scientometrics, 91(2), 399–416.CrossRefGoogle Scholar
  14. Gök, A., Rigby, J., & Shapira, P. (2016). The impact of research funding on scientific outputs: Evidence from six smaller European countries. Journal of the Association for Information Science and Technology, 67(3), 715–730.  https://doi.org/10.1002/asi.23406.CrossRefGoogle Scholar
  15. Grassano, N., Rotolo, D., Hutton, J., Lang, F., & Hopkins, M. M. (2017). Funding data from publication acknowledgments: Coverage, uses, and limitations. Journal of the Association for Information Science and Technology, 68(4), 999–1017.  https://doi.org/10.1002/asi.23737.CrossRefGoogle Scholar
  16. Ho, J. C., Saw, E. C., Lu, L. Y. Y., & Liu, J. S. (2014). Technological barriers and research trends in fuel cell technologies: A citation network analysis. Technological Forecasting and Social Change, 82(1), 66–79.CrossRefGoogle Scholar
  17. Hörlesberger, M., Roche, I., Besagni, D., Scherngell, T., François, C., Cuxac, P., et al. (2013). A concept for inferring `frontier research’ in grant proposals. Scientometrics, 97(2), 129–148.  https://doi.org/10.1007/s11192-013-1008-6.CrossRefGoogle Scholar
  18. Hosotsubo, M., & Nishii, R. (2016). Relation between awarding of grants-in-aid for scientific research and characteristics of applicants in Japanese universities. Scientometrics, 109(2), 1097–1116.  https://doi.org/10.1007/s11192-016-2074-3.CrossRefGoogle Scholar
  19. Joshi, V. A., Banavar, R. N., & Hippalgaonkar, R. (2010). Design and analysis of a spherical mobile robot. Mechanism and Machine Theory, 45(2), 130–136.  https://doi.org/10.1016/j.mechmachtheory.2009.04.003.CrossRefMATHGoogle Scholar
  20. Kang, S. W., Lee, S. C., Lee, S. H., Lee, K. Y., Jeong, J. J., Lee, Y. S., et al. (2009). Robotic thyroid surgery using a gasless, transaxillary approach and the da Vinci S system: The operative outcomes of 338 consecutive patients. Surgery, 146(6), 1048–1055.  https://doi.org/10.1016/j.surg.2009.09.007.CrossRefGoogle Scholar
  21. Kessler, M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10–25.CrossRefGoogle Scholar
  22. Klavans, R., & Boyack, K. W. (2017). Which type of citation analysis generates the most accurate taxonomy of scientific and technical knowledge? Journal of the Association for Information Science and Technology, 68(4), 984–998.  https://doi.org/10.1002/asi.23734.CrossRefGoogle Scholar
  23. Koay, K. L., Syrdal, D. S., Ashgari-Oskoei, M., Walters, M. L., & Dautenhahn, K. (2014). Social roles and baseline proxemic preferences for a domestic service robot. International Journal of Social Robotics, 6(4), 469–488.  https://doi.org/10.1007/s12369-014-0232-4.CrossRefGoogle Scholar
  24. Konstantinova, J., Jiang, A., Althoefer, K., Dasgupta, P., & Nanayakkara, T. (2014). Implementation of tactile sensing for palpation in robot-assisted minimally invasive surgery: A review. IEEE Sensors Journal, 14(8), 2490–2501.  https://doi.org/10.1109/JSEN.2014.2325794.CrossRefGoogle Scholar
  25. Lane, J. (2009). Science innovation. Assessing the impact of science funding. Science, 324(5932), 1273–1275.  https://doi.org/10.1126/science.1175335.Google Scholar
  26. Lepori, B. (2011). Coordination modes in public funding systems. Research Policy, 40(3), 355–367.  https://doi.org/10.1016/j.respol.2010.10.016.CrossRefGoogle Scholar
  27. Lewison, G., & Dawson, G. (1998). The effect of funding on the outputs of biomedical research. Scientometrics, 41(1–2), 17–27.  https://doi.org/10.1007/BF02457963.CrossRefGoogle Scholar
  28. Lewison, G., & Markusova, V. (2010). The evaluation of Russian cancer research. Research Evaluation, 19(2), 129–144.  https://doi.org/10.3152/095820210X510098.CrossRefGoogle Scholar
  29. Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., et al. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19), 1772–1783.  https://doi.org/10.1056/NEJMoa0911341.CrossRefGoogle Scholar
  30. Lok, C. (2010). Science funding: Science for the masses. Nature, 465(7297), 416–418.  https://doi.org/10.1038/465416a.CrossRefGoogle Scholar
  31. Lyall, C., Bruce, A., Marsden, W., & Meagher, L. (2013). The role of funding agencies in creating interdisciplinary knowledge. Science and Public Policy, 40(1), 62–71.  https://doi.org/10.1093/scipol/scs121.CrossRefGoogle Scholar
  32. Ministry of Economy Trade and Industry of Japan. (2015). New robot strategy. http://www.meti.go.jp/english/press/2015/pdf/0123_01b.pdf.
  33. Muller, R. (1980). Innovation and scientific funding. Science, 209, 880–883.  https://doi.org/10.1126/science.209.4459.880.CrossRefGoogle Scholar
  34. National Science Foundation. (2016). A roadmap for US robotics. http://jacobsschool.ucsd.edu/contextualrobotics/docs/rm3-final-rs.pdf.
  35. Nelson, B. J., Kaliakatsos, I. K., & Abbott, J. J. (2010). Microrobots for minimally invasive medicine. Annual Review of Biomedical Engineering, 12, 55–85.  https://doi.org/10.1146/annurev-bioeng-010510-103409.CrossRefGoogle Scholar
  36. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 69, 1–15.  https://doi.org/10.1103/PhysRevE.69.026113.Google Scholar
  37. Parameshwaran, R., Praveen Kumar, S., & Saravanakumar, K. (2015). An integrated fuzzy MCDM based approach for robot selection considering objective and subjective criteria. Applied Soft Computing Journal, 26, 31–41.  https://doi.org/10.1016/j.asoc.2014.09.025.CrossRefGoogle Scholar
  38. Paul-Hus, A., Desrochers, N., & Costas, R. (2016). Characterization, description, and considerations for the use of funding acknowledgement data in Web of Science. Scientometrics, 108(1), 167–182.  https://doi.org/10.1007/s11192-016-1953-y.CrossRefGoogle Scholar
  39. Povse, B., Haddadin, S., Belder, R., Koritnik, D., & Bajd, T. (2016). A tool for the evaluation of human lower arm injury: Approach, experimental validation and application to safe robotics. Robotica, 34(11), 2499–2515.  https://doi.org/10.1017/S0263574715000156.CrossRefGoogle Scholar
  40. Rangel, S. J., Efron, B., & Moss, R. L. (2002). Recent trends in national institutes of health funding of surgical research. Annals of Surgery, 236(3), 277–287.CrossRefGoogle Scholar
  41. Rigby, J. (2011). Systematic grant and funding body acknowledgement data for publications: New dimensions and new controversies for research policy and evaluation. Research Evaluation, 20(5), 365–375.  https://doi.org/10.3152/095820211X13164389670392.CrossRefGoogle Scholar
  42. Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? SPRU Working Paper Series, 6(10), 1–40.  https://doi.org/10.1016/j.respol.2015.06.006.Google Scholar
  43. Sanders, D., Tewkesbury, G., Stott, I. J., & Robinson, D. (2011). Simple expert systems to improve an ultrasonic sensor-system for a tele-operated mobile-robot. Sensor Review, 31(3), 246–260.  https://doi.org/10.1108/02602281111140029.CrossRefGoogle Scholar
  44. Shen, C.-C., Hu, Y.-H., Lin, W.-C., Tsai, C.-F., & Ke, S.-W. (2016). Research impact of general and funded papers. Online Information Review, 40(4), 472–480.  https://doi.org/10.1108/OIR-08-2015-0249.CrossRefGoogle Scholar
  45. Shibata, N., Kajikawa, Y., Takeda, Y., & Matsushima, K. (2009). Comparative study on methods of detecting research fronts using different types of citation. Journal of the American Society for Information Science and Technology, 60(3), 571–580.CrossRefGoogle Scholar
  46. Small, H. (1973). Co-citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269.  https://doi.org/10.1002/asi.4630240406.CrossRefGoogle Scholar
  47. SPARC. (2016). Robotics 2020 multi-annual roadmap for robotics in europe. SPARK the partnership for robotics in Europe and the European commission. https://eu-robotics.net/sparc//wp-content/uploads/2014/05/H2020-Robotics-Multi-Annual-Roadmap-ICT-2016.pdf. Accessed March 30, 2017.
  48. Takano, Y., Kajikawa, Y., & Ando, M. (2017). Trends and typology of emerging antenna propagation technologies: Citation network analysis. International Journal of Innovation and Technology Management, 14(1), 2872–2881.  https://doi.org/10.1142/S0219877017400053.CrossRefGoogle Scholar
  49. Takano, Y., Mejia, C., & Kajikawa, Y. (2016). Dynamics of the research classification schema across technologies: Case study of IoT-related technologies. In Y. Fei (Ed.), The first international conference of innovation studies (p. 15). Beijing: Tsinghua University.Google Scholar
  50. Tedeschi, F., & Carbone, G. (2015). Hexapod walking robot locomotion. In G. Carbone & F. Gomez-Bravo (Eds.), Mechanisms and machine science (Vol. 29, pp. 439–468). Berlin: Springer.  https://doi.org/10.1007/978-3-319-14705-5_15.Google Scholar
  51. Wang, J., & Shapira, P. (2011). Funding acknowledgement analysis: An enhanced tool to investigate research sponsorship impacts: the case of nanotechnology. Scientometrics, 87(3), 563–586.  https://doi.org/10.1007/s11192-011-0362-5.CrossRefGoogle Scholar
  52. Wang, J., & Shapira, P. (2015). Is there a relationship between research sponsorship and publication impact? An analysis of funding acknowledgments in nanotechnology papers. PLoS ONE, 10(2), e0117727.  https://doi.org/10.1371/journal.pone.0117727.CrossRefGoogle Scholar
  53. Web of Science. (2008). Funding acknowledgements (online). Clarivate analytics. http://wokinfo.com/products_tools/multidisciplinary/webofscience/fundingsearch/. Accessed March 30, 2017.
  54. Wolcott, H. N., Fouch, M. J., Hsu, E. R., DiJoseph, L. G., Bernaciak, C. A., Corrigan, J. G., et al. (2016). Modeling time-dependent and -independent indicators to facilitate identification of breakthrough research papers. Scientometrics, 107(2), 807–817.  https://doi.org/10.1007/s11192-016-1861-1.CrossRefGoogle Scholar
  55. Yan, E. (2014). Research dynamics: Measuring the continuity and popularity of research topics. Journal of Informetrics, 8(1), 98–110.CrossRefGoogle Scholar
  56. Yegros-Yegros, A., & Costas, R. (2013). Analysis of the web of science funding acknowledgement information for the design of indicators on “external funding attraction.” In J. Gorraiz (Ed.), The 14th international society of scientometrics and informetrics conference (Vol. 1, pp. 84–95). Viena, Austria. http://www.scopus.com/inward/record.url?eid=2-s2.0-84896874684&partnerID=40&md5=4f327d10e423a71fa0688fc1e04b6788.
  57. Zhao, D. (2010). Characteristics and impact of grant-funded research: A case study of the library and information science. Scientometrics, 84(2), 293–306.  https://doi.org/10.1007/s11192-010-0191-y.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of Innovation, Graduate School of Innovation ManagementTokyo Institute of TechnologyTokyoJapan

Personalised recommendations