Skip to main content
Log in

A pilot study on the connection between scientific fields and patent classification systems

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Methods to link academic research achievements with innovative industries have gained considerable awareness worldwide in recent years. Subsequently, responding to industries’ demand to reinforce the linkage between scientific research and industries is an issue awaiting urgent resolution for the government. Previous scientific pertaining to the linkage between scientific fields and (academic papers) technological fields (technology patents) primarily focus on non-patent research or university–industry collaboration. However, these studies failed to highlight the type of linkages between science and technological fields. Therefore, we conducted a pilot study to identify the core scientific fields in different technological fields. In addition to the proposed network maps linking scientific and technological fields, this study also identified the core scientific fields for patent development, including materials science, multidisciplinary; engineering, chemical; physics, applied; nanoscience and nanotechnology; and chemistry, physical. Due to the scarcity of research pertaining to the linkage of scientific fields and technological fields, the government, research and development units, and universities lack a framework for linking fundamental scientific research with the development of industry technologies. Therefore, in this study, we used an author–inventor network to analyze this research topic, expecting that the results can serve as a reference for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albino, V., Ardito, L., Dangelico, R. M., & Messeni Petruzzelli, A. (2014). Understanding the development trends of low-carbon energy technologies: A patent analysis. Applied Energy, 135, 836–854.

    Article  Google Scholar 

  • Alessandrini, M., Klose, K., & Pepper, M. S. (2013). University entrepreneurship in South Africa: Developments in technology transfer practices. Innovation: Management, Policy & Practice, 15(2), 205–214.

    Article  Google Scholar 

  • Åstebro, T., Bazzazian, N., & Braguinsky, S. (2012). Startups by recent university graduates and their faculty: Implications for university entrepreneurship policy. Research Policy, 41(4), 663–677.

    Article  Google Scholar 

  • Basberg, B. (1987). Patents and the measurement of technological change: A survey of the literature. Research Policy, 16(2–4), 131–141.

    Article  Google Scholar 

  • Bass, S. D., & Kurgan, L. A. (2010). Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology. Scientometrics, 82(2), 217–241.

    Article  Google Scholar 

  • Bassecoulard, E., & Zitt, M. (2004). Patents and publications: The lexical connection. In H. F. Moed, W. Glänzel, & U. Schmoch (Eds.), Handbook of quantitative science and technology research: the use of publication and patent statistics in studies of S&T systems (pp. 665–694). Dordrecht, NL: Kluwer Academic Publishers.

    Google Scholar 

  • Bodas Freitas, I. M., Geuna, A., & Rossi, F. (2013). Finding the right partners: Institutional and personal modes of governance of university–industry interactions. Research Policy, 42(1), 50–62.

    Article  Google Scholar 

  • Bonaccorsi, A., & Thoma, G. (2007). Institutional complementarily and inventive performance in nano science and technology. Research Policy, 36(6), 813–831.

    Article  Google Scholar 

  • Bonvillian, W. B. (2014). The new model innovation agencies: An overview. Science & Public Policy, 41(4), 425–437.

    Article  Google Scholar 

  • Boyack, K. W., & Klavans, R. (2008). Measuring science–technology interaction using rare inventor–author names. Journal of Informetrics, 2(3), 173–182.

    Article  Google Scholar 

  • Breschi, S., & Catalini, C. (2010). Tracing the links between science and technology: An exploratory analysis of scientists’ and inventors’ networks. Research Policy, 39(1), 14–26.

    Article  Google Scholar 

  • Calvert, J., & Patel, P. (2003). university–industry research collaborations in the UK: Bibliometric trends. Science Public Policy, 30(2), 85–96.

    Article  Google Scholar 

  • Casper, S. (2013). The spill-over theory reversed: The impact of regional economies on the commercialization of university science. Research Policy, 42(8), 1313–1324.

    Article  Google Scholar 

  • Choe, H., & Lee, D. H. (2017). The structure and change of the research collaboration network in Korea (2000–2011): Network analysis of joint patents. Scientometrics, 111(2), 917–939.

    Article  Google Scholar 

  • Etzkowitz, H., & Leydesdorff, L. (2000). The dynamics of innovation: From national systems and ‘Mode 2’ to a triple helix of university–industry–government relations. Research Policy, 29(2), 109–123.

    Article  Google Scholar 

  • Fenga, H. I., Chena, C. S., Wanga, C. H., & Chiang, H. C. (2012). The role of intellectual capital and university technology transfer offices in university-based technology transfer. The Service Industries Journal, 32(6), 899–917.

    Article  Google Scholar 

  • Festel, G. (2013). Academic spin-offs, corporate spin-outs and company internal start-ups as technology transfer approach. Journal of Technology Transfer, 38(4), 454–470.

    Article  Google Scholar 

  • Glänzel, W., & Schubert, A. (2003). Anew classification scheme of science fields and subfields designed for scientometric evaluation purposes. Scientometrics, 56(3), 357–367.

    Article  Google Scholar 

  • Godin, B. (1995). Research and the practice of publication in industries. Research Policy, 25(4), 587–606.

    Article  Google Scholar 

  • Grupp, H., & Mogee, M. E. (2004). Indicators for national science and technology policy: How robust are composite indicators? Research Policy, 33(9), 1373–1384.

    Article  Google Scholar 

  • Guan, J., & He, Y. (2007). Patent-bibliometric analysis on the Chinese science–technology linkages. Scientometrics, 72(3), 403–425.

    Article  Google Scholar 

  • Ho, M. H. C., Liu, J. S., Lu, W. M., & Huang, C. C. (2014). A new perspective to explore the technology transfer efficiencies in US universities. Journal of Technology Transfer, 39(2), 247–275.

    Article  Google Scholar 

  • Hsu, C. L., & Chiang, C. H. (2015). The financial crisis research: A bibliometric analysis. Scientometrics, 105(1), 161–177.

    Article  Google Scholar 

  • Huang, M. H., Dong, H. R., & Chen, D. Z. (2013). The unbalanced performance and regional differences in scientific and technological collaboration in the field of solar cells. Scientometrics, 94(1), 423–438.

    Article  Google Scholar 

  • Huang, M. H., Yang, H. W., & Chen, D. Z. (2015). Industry-academia collaboration in fuel cells: A perspective from paper and patent analysis. Scientometrics, 105(2), 1301–1318.

    Article  Google Scholar 

  • Ibarra, H. (1993). Network centrality, power and innovation involvement: Determinants of technical and administrative roles. Academy of Management Journal, 36(3), 471–501.

    Article  Google Scholar 

  • Jacsó, P. (2011). The h-index, h-core citation rate and the bibliometric profile of the Web of Science database in three configurations. Online Information Review, 35(5), 821–833.

    Article  Google Scholar 

  • Ju, Y., & Sohn, S. (2015). Identifying patterns in rare earth element patents based on text and data mining. Scientometrics, 102(1), 389–410.

    Article  Google Scholar 

  • Leydesdorff, L., Alkemade, F., Heimeriks, G., & Hoekstra, R. (2015). Patents as instruments for exploring innovation dynamics: Geographic and technological perspectives on ‘photovoltaic cells’. Scientometrics, 102(1), 629–651.

    Article  Google Scholar 

  • Leydesdorff, L., Carley, S., & Rafols, I. (2013). Global maps of science based on the new Web-of-Science Categories. Scientometrics, 94(2), 589–593.

    Article  Google Scholar 

  • Leydesdorff, L., Kushnir, D., & Rafols, I. (2014). Interactive overlay maps for US patent (USPTO) data based on International Patent Classification (IPC). Scientometrics, 98(3), 1583–1599.

    Article  Google Scholar 

  • Lin, W. Y. C., Chen, D. Z., & Huang, M. H. (2011). Relation between technology and science: A perspective of patent and paper production. Journal of Educational Media & Library Sciences, 48(3), 303–323.

    Google Scholar 

  • Liu, G. (2013). Visualization of patents and papers in terahertz technology: A comparative study. Scientometrics, 94(3), 1037–1056.

    Article  Google Scholar 

  • Maraut, S., & Martínez, C. (2014). Identifying author-inventors from Spain: Methods and a first insight into results. Scientometrics, 101(1), 445–476.

    Article  Google Scholar 

  • Meyer, M. (2003). Are academic patents an indicator of useful university research? Research Evaluation, 12(1), 17–27.

    Article  Google Scholar 

  • Meyer, M. (2006). Are patenting scientists the better scholars? An exploratory comparison of inventor–authors with their non-inventing peers in nano-science and technology. Research Policy, 35(10), 1646–1662.

    Article  Google Scholar 

  • Meyer-Krahmer, F., & Schmoch, U. (1998). Science-based technologies: University–industry interactions in four fields. Research Policy, 27(8), 835–851.

    Article  Google Scholar 

  • Montecchi, T., Russo, D., & Liu, Y. (2013). Searching in Cooperative Patent Classification: Comparison between keyword and concept-based search. Advanced Engineering Informatics, 27(3), 335–345.

    Article  Google Scholar 

  • Mueller, S. C., Sandner, P. G., & Welpe, I. M. (2015). Monitoring innovation in electrochemical energy storage technologies: A patent-based approach. Applied Energy, 137, 537–544.

    Article  Google Scholar 

  • Murray, F., & Stern, S. (2007). Do formal intellectual property rights hinder the free flow of scientific knowledge? Journal of Economic Behavior & Organization, 63(4), 648–687.

    Article  Google Scholar 

  • Narin, F., & Noma, E. (1985). Is technology becoming science? Scientometrics, 7(3–6), 369–381.

    Article  Google Scholar 

  • Narin, F., Noma, E., & Perry, R. (1987). Patents as indicators of corporate technological strength. Research Policy, 16(2–4), 143–155.

    Article  Google Scholar 

  • Noyons, E. C. M., Buter, R. K., van Raan, A. F. J., Schmoch, U., Heinze, T., Hinze, S., & Rangnow, R. (2004). Mapping excellence in science and technology across Europe: Nanoscience and nanotechnology. Leiden, NL: Centre for Science and Technology Studies (CWTS), Leiden University.

  • OECD. (2008). Compendium of patent statistics. Paris, FR: OECD.

    Google Scholar 

  • Okamuro, K., & Nishimura, J. (2013). Impact of university intellectual property policy on the performance of university–industry research collaboration. Journal of Technology Transfer, 38(3), 273–301.

    Article  Google Scholar 

  • Park, H., & Kang, J. (2009). Patterns of scientific and technological knowledge flows based on scientific papers and patents. Scientometrics, 81(3), 811–820.

    Article  Google Scholar 

  • Paul-Hus, A., Desrochers, N., & Costas, R. (2016). Characterization, description, and considerations for the use of funding acknowledgement data in Web of Science. Scientometrics, 108(1), 167–182.

    Article  Google Scholar 

  • Perkmann, M., & Walsh, K. (2009). The two faces of collaboration: Impacts of university–industry relations on public research. Industrial and Corporate Change, 18(6), 1033–1065.

    Article  Google Scholar 

  • Ponomariov, B. (2013). Government-sponsored university–industry collaboration and the production of nanotechnology patents in US universities. Journal of Technology Transfer, 38(6), 749–767.

    Article  Google Scholar 

  • Rasmussen, E., & Sørheim, R. (2012). How governments seek to bridge the financing gap for university spin-offs: Proof-of-concept, pre-seed, and seed funding. Technology Analysis & Strategic Management, 24(7), 663–678.

    Article  Google Scholar 

  • Sandal, N., & Kumar, A. (2016). Searching and analysing patent document to solve R&D problems. DESIDOC Journal of Library & Information Technology, 36(2), 65–72.

    Article  Google Scholar 

  • Schmoch, U., Dornbusch, F., Mallig, N., Michels, C., Schulze, N., & Bethke, N. (2012). Vollständige Erfassung von Patentan-meldungen aus Universitäten. http://www.isi.fraunhofer.de/isi-wAssets/docs/p/de/publikationen/Endbericht-Unipatente-Maerz-2012.pdf. Accessed 5 July 2017.

  • Schoen, A., Heinisch, D., & Buenstorf, G. (2014). Playing the ‘Name Game’ to identify academic patents in Germany. Scientometrics, 101(1), 527–545.

    Article  Google Scholar 

  • Sherry, E. F., & Teece, D. J. (2004). Royalties, evolving patent rights, and the value of innovation. Research Policy, 33(2), 179–191.

    Article  Google Scholar 

  • Soon, C., & Cho, H. (2011). Flows of relations and communication among Singapore political bloggers and organizations: The networked public sphere approach. Journal of Information Technology & Politics, 8(1), 93–109.

    Article  Google Scholar 

  • Subramanian, A. M., & Soh, P. H. (2010). An empirical examination of the science–technology relationship in the biotechnology industry. Journal of Engineering and Technology Management, 27(3/4), 160–171.

    Article  Google Scholar 

  • Swar, B., & Khan, G. F. (2013). An analysis of the information technology outsourcing domain: A social network and triple helix approach. Journal of the American Society for Information Science and Technology, 64(11), 2366–2378.

    Article  Google Scholar 

  • Testa, J. (2016). The Thomson Reuters journal selection process. http://thomsonreuters.com/products_services/science/free/essays/journal_selection_process/. Accessed 23 October 2016.

  • Thomson Reuters (2014). Incites indicators handbook. http://researchanalytics.thomsonreuters.com/m/pdfs/indicators-handbook.pdf. Accessed 10 July 2017.

  • Thomson Reuters (2016). Web of Science subject areas. http://incites.isiknowledge.com/common/help/h_field_category_wos.html. Accessed 23 October 2016.

  • Van der Valk, T., Chappin, M. M., & Gijsbers, G. W. (2011). Evaluating innovation networks in emerging technologies. Technological Forecasting and Social Change, 78(1), 25–39.

    Article  Google Scholar 

  • Van Looy, B., Callaert, J., & Debackere, K. (2006). Publication and patent behavior of academic researchers: Conflicting, reinforcing or merely co-existing? Research Policy, 35(4), 596–608.

    Article  Google Scholar 

  • Van Looy, B., Magerman, T., & Debackere, K. (2007). Developing technology in the vicinity of science: An examination of the relationship between science intensity (of patents) and technological productivity within the field of biotechnology. Scientometrics, 70(2), 441–458.

    Article  Google Scholar 

  • Waltman, L., & Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology, 63(12), 2378–2392.

    Article  Google Scholar 

  • Wang, G., & Guan, J. (2011). Measuring science-technology interactions using patent citations and author-inventor links: An exploration analysis from Chinese nanotechnology. Journal of Nanoparticle Research, 13(12), 6245–6262.

    Article  Google Scholar 

  • Wang, X., Wang, Z., Huang, Y., Chen, Y., Zhang, Y., Ren, H., et al. (2017). Measuring interdisciplinarity of a research system: Detecting distinction between publication categories and citation categories. Scientometrics, 111(3), 2023–2039.

    Article  Google Scholar 

  • White, M. (2010). Patent searching: Back to the future how to use patent classification search tools to create better searches. In First Annual Conference of the Canadian Engineering Education Association, Kingston, Ontario.

  • WIPO (2013). The IPC-technology concordance table. http://www.wipo.int/ipstats/en/statistics/technology_concordance.html. Accessed 26 October 2016.

  • WIPO. (2016). 2016 World intellectual property indicators. Geneva, CH: World Intellectual Property Organization.

    Google Scholar 

  • Wong, C. Y., Fatimah Mohamad, Z., Keng, Z. X., & Ariff Azizan, S. (2014). Examining the patterns of innovation in low carbon energy science and technology: Publications and patents of Asian emerging economies. Energy Policy, 73, 789–802.

    Article  Google Scholar 

  • Zhai, L., Pan, Y., Guo, Y., Ma, Z., & Bi, F. (2014). International comparative study on nanofiltration membrane technology based on relevant publications and patents. Scientometrics, 101(2), 1361–1374.

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided by Ministry of Science and Technology of the Republic of China (Taiwan) (Grant No. Most 106-2410-H-492-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Hao Chang.

Appendix

Appendix

See Table 5.

Table 5 Science-patent linkage chart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, SH. A pilot study on the connection between scientific fields and patent classification systems. Scientometrics 114, 951–970 (2018). https://doi.org/10.1007/s11192-017-2613-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-017-2613-6

Keywords

Navigation