Advertisement

Scientometrics

, Volume 114, Issue 3, pp 919–932 | Cite as

The power law relationship between citation impact and multi-authorship patterns in articles in Information Science & Library Science journals

  • Guillermo Armando Ronda-Pupo
  • J. Sylvan Katz
Article

Abstract

The aim of this paper is to extend the conversation about the correlation between collaboration and citation impact in articles in Information Science & Library Science journals by analyzing this correlation’s behavior using a power scaling law approach. 28,131 articles that received 215,693 citations were analyzed. The number of these articles that were published through collaboration accounts for 69%. In general, the scaling exponent of multi-authored articles, both international and domestic, increases over time while the exponent of single-authored papers decreases. The citation impact and collaboration patterns exhibit a power law correlation with a scaling exponent of 1.34 ± 0.02. Citations to multi-authored articles increased \(2^{1.34}\) or 2.53 times each time the number of multi-authored papers doubled. The Matthew Effect is stronger for multi-authored papers than for single-authored. The scaling exponent for the power law relationship of domestic multi-authored papers was 1.35 ± 0.02. The citations to domestic multi-authored articles increased \(2^{1.35}\) or 2.55 times each time the number of domestic multi-authored articles doubled. Contrary to previous studies we found that the Matthew Effect is stronger for domestic multi-authored papers than for international multi-authored ones.

Keywords

Cooperation Collaboration Co-authorship Matthew effect Multi-authorship Power law Scale-independent 

Notes

Acknowledgements

We thank two anonymous reviewers for their interesting suggestions on a previous version of the manuscript.

Funding

Funding was provided by Universidad Católica del Norte, Chile (Grant No. 01-01-230203-10301440-NADA).

References

  1. Adams, J., & Gurney, K. (2013). Leading research economies in a changing knowledge network. Spain. Global research digest. Retrieved from http:www.researchanalytics.thomsonreuters.com/grr.
  2. Ardanuy, J. (2011). Scientific collaboration in Library and Information Science viewed through the Web of Knowledge: The Spanish case. Scientometrics, 90(3), 877–890.  https://doi.org/10.1007/s11192-011-0552-1.CrossRefGoogle Scholar
  3. Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.  https://doi.org/10.1126/science.286.5439.509.MathSciNetCrossRefMATHGoogle Scholar
  4. Bettencourt, L. M. A., Kaiser, D. I., Kaur, J., Castillo-Chavez, C., & Wojick, D. E. (2008). Population modeling of the emergence and development of scientific fields. Scientometrics, 75(3), 495–518.  https://doi.org/10.1007/s11192-007-1888-4.CrossRefGoogle Scholar
  5. Bornmann, L. (2017). Is collaboration among scientists related to the citation impact of papers because their quality increases with collaboration? An analysis based on data from F1000Prime and normalized citation scores. Journal of the Association for Information Science and Technology, 68(4), 1036–1047.  https://doi.org/10.1002/asi.23728.CrossRefGoogle Scholar
  6. Brzezinski, M. (2015). Power laws in citation distributions: Evidence from Scopus. Scientometrics, 103(1), 213–228.  https://doi.org/10.1007/s11192-014-1524-z.CrossRefGoogle Scholar
  7. Clauset, A., Shalizi, C. R., & Newman, M. E. J. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.  https://doi.org/10.1137/070710111.MathSciNetCrossRefMATHGoogle Scholar
  8. Coccia, M., & Bozeman, B. (2016). Allometric models to measure and analyze the evolution of international research collaboration. Scientometrics, 108(3), 1065–1084.  https://doi.org/10.1007/s11192-016-2027-x.CrossRefGoogle Scholar
  9. de Solla-Price, D. J. (1965). Networks of scientific papers. Science, 14(3683), 510–515.  https://doi.org/10.1126/science.149.3683.510.CrossRefGoogle Scholar
  10. de Solla-Price, D. J. (1976). A general theory of bibliometric and other cumulative advantage processes. Journal of the American Society for Information Science and Technology, 27(5), 292–306.  https://doi.org/10.1002/asi.4630270505.CrossRefGoogle Scholar
  11. Egghe, L. (2005). The power of power laws and an interpretation of lotkaian informetric systems as self-similar fractals. Journal of the American Society for Information Science and Technology, 56(7), 669–675.  https://doi.org/10.1002/asi.20158.CrossRefGoogle Scholar
  12. Egghe, L. (2007). Dynamich-index: The Hirsch index in function of time. Journal of the American Society for Information Science and Technology, 58(3), 452–454.  https://doi.org/10.1002/asi.20473.CrossRefGoogle Scholar
  13. Egghe, L., Liang, L. M., & Rousseau, R. (2009). A relation between h-index and impact factor in the power-law model. Journal of the American Society for Information Science and Technology, 60(11), 2362–2365.  https://doi.org/10.1002/asi.21144.CrossRefGoogle Scholar
  14. Egghe, L., & Rousseau, R. (1986). A characterization of distributions which satisfy Price’s Law and consequences for the Laws of Zipf and Mandelbrot. Journal of Information Science, 12(4), 193–197.  https://doi.org/10.1177/016555158601200406.Google Scholar
  15. Egghe, L., & Rousseau, R. (2013). An informetric model for the Hirsch-index. Scientometrics, 69(1), 121–129.  https://doi.org/10.1007/s11192-006-0143-8.CrossRefGoogle Scholar
  16. Gibrat, R. (1931). Les Inégalités économiques. Paris: Librairie du Recueil Sirey.MATHGoogle Scholar
  17. Han, P., Shi, J., Li, X., Wang, D., Shen, S., & Su, X. (2013). International collaboration in LIS: Global trends and networks at the country and institution level. Scientometrics, 98(1), 53–72.  https://doi.org/10.1007/s11192-013-1146-x.CrossRefGoogle Scholar
  18. Hart, R. L. (2007). Collaboration and article quality in the literature of academic librarianship. The Journal of Academic Librarianship, 33(2), 190–195.  https://doi.org/10.1016/j.acalib.2006.12.002.CrossRefGoogle Scholar
  19. Katz, J. S. (1999). The self-similar science system. Research Policy, 28(5), 501–517.  https://doi.org/10.1016/S0048-7333(99)00010-4.CrossRefGoogle Scholar
  20. Katz, J. S. (2005). Scale-independent bibliometric indicators. Measurement: Interdisciplinary Research and Perspectives, 3(1), 24–28.  https://doi.org/10.1207/s15366359mea0301_3.MathSciNetGoogle Scholar
  21. Katz, J. S. (2006). Indicators for complex innovation systems. Research Policy, 35(7), 893–909.  https://doi.org/10.1016/j.respol.2006.03.007.CrossRefGoogle Scholar
  22. Katz, J. S. (2016). What is a complex innovation system? PLoS ONE, 11(6), e0156150.  https://doi.org/10.1371/journal.pone.0156150.CrossRefGoogle Scholar
  23. Katz, J. S., & Cothey, V. (2006). Web indicators for complex innovation systems. Research Evaluation, 14(2), 85–95.  https://doi.org/10.3152/147154406781775922.CrossRefGoogle Scholar
  24. Leguendre, P., & Leguendre, L. (2012). Numerical ecology (3rd ed., Vol. 24). London: Elsevier B. V.Google Scholar
  25. Levitt, J., & Thelwall, M. (2009). Citation levels and collaboration within library and information science. Journal of the American Society for Information Science and Technology, 60(3), 434–442.  https://doi.org/10.1002/asi.21000.CrossRefGoogle Scholar
  26. Levitt, J., & Thelwall, M. (2010). Does the higher citation of collaborative research differ from region to region? A case study of economics. Scientometrics, 85(1), 171–183.  https://doi.org/10.1007/s11192-010-0197-5.CrossRefGoogle Scholar
  27. Levitt, J., & Thelwall, M. (2016). Long term productivity and collaboration in information science. Scientometrics, 108(3), 1103–1117.  https://doi.org/10.1007/s11192-016-2061-8.CrossRefGoogle Scholar
  28. Lotka, A. J. (1926). The frecuency distribution of scientific productivity. Journal of the Academy of Sciences, 16(1), 317–323.Google Scholar
  29. Mayernik, M. (2010). The distributions of MARC Fields in bibliographic records a power law analysis. Library Resources & Technical Services, 54(1), 40–54.  https://doi.org/10.5860/lrts.54n1.40.CrossRefGoogle Scholar
  30. Merton, R. K. (1968). The Matthew effect in science. Science, 159(3810), 56–63.  https://doi.org/10.1126/science.159.3810.56.CrossRefGoogle Scholar
  31. Merton, R. K. (1988). The Matthew effect in science, II: Cumulative advantage and the symbolism of intellectual property. Isis, 79(4), 606–623.  https://doi.org/10.1086/354848.CrossRefGoogle Scholar
  32. Milojevic, S. (2010). Power law distributions in information Science: Making the case for logarithmic binning. Journal of the American Society for Information Science and Technology, 61(12), 2417–2425.  https://doi.org/10.1002/asi.21426.CrossRefGoogle Scholar
  33. Naranan, S. (1971). Power law relations in science bibliography: A self-consistent interpretation. Journal of Documentation, 27(2), 83–97.  https://doi.org/10.1108/eb026510.CrossRefGoogle Scholar
  34. Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323–351.  https://doi.org/10.1080/00107510500052444.CrossRefGoogle Scholar
  35. Nomaler, O., Frenken, K., & Heimeriks, G. (2014). On scaling of scientific knowledge production in U.S. metropolitan areas. PLoS ONE, 9(10), e110805.  https://doi.org/10.1371/journal.pone.0110805.CrossRefGoogle Scholar
  36. Ronda-Pupo, G. A., & Katz, J. S. (2016a). The power-law relationship between citation-based performance and collaboration in articles in management journals: A scale-independent approach. Journal of the Association for Information Science and Technology, 67(10), 2565–2572.  https://doi.org/10.1002/asi.23575.CrossRefGoogle Scholar
  37. Ronda-Pupo, G. A., & Katz, J. S. (2016b). The scaling relationship between citation-based performance and international collaboration of Cuban articles in natural sciences. Scientometrics, 107(3), 1423–1434.  https://doi.org/10.1007/s11192-016-1939-9.CrossRefGoogle Scholar
  38. Ronda-Pupo, G. A., & Katz, J. S. (2017). The scaling relationship between citation-based performance and scientific collaboration in natural sciences. Journal of the Association for Information Science and Technology, 68(5), 1257–1265.  https://doi.org/10.1002/asi.23759.CrossRefGoogle Scholar
  39. Sahal, D. (1981). Patterns of technological innovation. New York: Addison-Wesley.Google Scholar
  40. Simon, H. A. (1955). On a class of skew distribution. Biometrika, 42(3–4), 425–440.  https://doi.org/10.2307/2333389.MathSciNetCrossRefMATHGoogle Scholar
  41. Sin, S.-C. J. (2011). International coauthorship and citation impact: A bibliometric study of six LIS journals, 1980–2008. Journal of the American Society for Information Science and Technology, 62(9), 1770–1783.  https://doi.org/10.1002/asi.21572.CrossRefGoogle Scholar
  42. Smith, R. J. (2009). Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology, 140(3), 476–486.  https://doi.org/10.1002/ajpa.21090.CrossRefGoogle Scholar
  43. Sutter, M., & Kocher, M. G. (2001). Power laws of research output. Evidence for journals of economics. Scientometrics, 51(2), 405–414.  https://doi.org/10.1023/a:1012757802706.CrossRefGoogle Scholar
  44. Thelwall, M. (2016a). Are the discretised lognormal and hooked power law distributions plausible for citation data? Journal of Informetrics, 10(2), 454–470.  https://doi.org/10.1016/j.joi.2016.03.001.CrossRefGoogle Scholar
  45. Thelwall, M. (2016b). Are there too many uncited articles? Zero inflated variants of the discretised lognormal and hooked power law distributions. Journal of Informetrics, 10(2), 622–633.  https://doi.org/10.1016/j.joi.2016.04.014.CrossRefGoogle Scholar
  46. Thelwall, M. (2016c). The discretised lognormal and hooked power law distributions for complete citation data: Best options for modelling and regression. Journal of Informetrics, 10(2), 336–346.  https://doi.org/10.1016/j.joi.2015.12.007.CrossRefGoogle Scholar
  47. van Raan, A. F. J. (2006). Statistical properties of bibliometric indicators: Research group indicator distributions and correlations. Journal of the American Asociation ofr Information Science and Technology, 57, 408–430.  https://doi.org/10.1002/asi.20284.CrossRefGoogle Scholar
  48. van Raan, A. F. J. (2008). Bibliometric statistical properties of the 100 largest european research universities: Prevalent scaling rules in the science system. Journal of the American Society for Information Science and Technology, 59(3), 461–475.  https://doi.org/10.1002/asi.20761.CrossRefGoogle Scholar
  49. van Raan, A. F. J. (2013). Universities scale like cities. Plos One, 8(3), e59384.  https://doi.org/10.1371/journal.pone.0059384.CrossRefGoogle Scholar
  50. Ye, F. Y., & Rousseau, R. (2008). The power law model and total career h-index sequences. Journal of Informetrics, 2(4), 288–297.  https://doi.org/10.1016/j.joi.2008.09.002.CrossRefGoogle Scholar
  51. Zhao, S. X., & Ye, F. Y. (2013). Power-law link strength distribution in paper cocitation networks. Journal of the American Society for Information Science and Technology, 64(7), 1480–1489.  https://doi.org/10.1002/asi.22846.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Departamento de AdministraciónUniversidad Católica del NorteAntofagastaChile
  2. 2.Departamento de TurismoUniversidad de Holguín Cuba, Avenida XX Aniversario, Piedra BlancaHolguínCuba
  3. 3.SPRU, Jubilee BuildingUniversity of SussexFalmer, BrightonUK
  4. 4.Johnson-Shoyama Graduate School of Public PolicySaskatoonCanada

Personalised recommendations