Scientometrics

, Volume 114, Issue 2, pp 409–426 | Cite as

Science map metaphors: a comparison of network versus hexmap-based visualizations

  • Katy Börner
  • Adam H. Simpson
  • Andreas Bueckle
  • Robert L. Goldstone
Article

Abstract

Most maps of science use a network layout; few use a landscape metaphor. Human users are trained in reading geospatial maps, yet most have a hard time reading even simple networks. Prior work using general networks has shown that map-based visualizations increase recall accuracy of data. This paper reports the result of a comparison of two comparable renderings of the UCSD map of science that are: the original network layout and a novel hexmap that uses a landscape metaphor to layout the 554 subdisciplines grouped into 13 color-coded disciplines of science. Overlaid are HITS metrics that show the impact and transformativeness of different scientific subdisciplines. Both maps support the same interactivity, including search, filter, zoom, panning, and details on demand. Users performed memorization, search, and retrieval tasks using both maps. Results did not show any significant differences in how the two maps were remembered or used by participants. We conclude with a discussion of results and planned future work.

Keywords

Mapping science Interactive data visualizations User studies 

Notes

Acknowledgements

The authors would like to thank Joseph Staudt, Huifeng Yu, Robert Light, Gerald Marschke, and Bruce Weinberg from the HITS metrics team for their expert comments on the design and functionality of the two visualizations. Michael Frisby and David Endicott from the Social Science Research Commons at Indiana University Bloomington provided data analysis support. Börner, Simpson, and Bueckle are partially supported by the National Institutes of Health under awards P01 AG039347 and U01CA198934 and the National Science Foundation under award EAGER 1566393, NCN CP Supplement 1553044, and AISL 1713567. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. This study was accepted by the Human Subjects Office of Indiana University Bloomington as meeting the criteria of exempt research as described in the Federal regulations at 45 CFR 46.101(b), paragraph 2. The Human Subjects Office accepted the use of an information sheet.

References

  1. Börner, K. (2010). Atlas of science: Visualizing what we know. Cambridge, MA: The MIT Press.Google Scholar
  2. Börner, K. (2015). Atlas of knowledge: Anyone can map. Cambridge, MA: The MIT Press.Google Scholar
  3. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37, 179–255.CrossRefGoogle Scholar
  4. Börner, K., Klavans, R., Patek, M., Zoss, A., Biberstine, J. R., Light, R., et al. (2012). Design and update of a classification system: The UCSD map of science. PLoS ONE, 7(7), e39464.  https://doi.org/10.1371/journal.pone.0039464.CrossRefGoogle Scholar
  5. Boyack, K. W., Börner, K., & Klavans, R. (2009). Mapping the structure and evolution of chemistry research. Scientometrics, 79(1), 45–60.CrossRefGoogle Scholar
  6. Boyack, K. W., & Klavans, R. (2009). Toward a consensus map of science. Journal of the American Society for Information Science and Technology, 60(3), 455–476.CrossRefGoogle Scholar
  7. Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.CrossRefGoogle Scholar
  8. Boyack, K. W., Newman, D., Duhon, R. J., Klavans, R., Patek, M., Biberstine, J. R., et al. (2011). Clustering more than two million biomedical publications: Comparing the accuracies of nine text-based similarity approaches. PLoS ONE, 6(3), e18029.  https://doi.org/10.1371/journal.pone.0018029.CrossRefGoogle Scholar
  9. Chen, C. (2003). Mapping scientific frontiers. London: Springer Verlag.Google Scholar
  10. de Leeuw, J. R. (2015). jsPsych: A JavaScript library for creating behavioral experiments in a Web browser. Behavior Research Methods, 47(1), 1–12.CrossRefGoogle Scholar
  11. Emmons, S., Kobourov, S., Gallant, M., & Börner, K. (2016). Analysis of network clustering algorithms and cluster quality metrics at scale. PLoS ONE, 11(7), e0159161.  https://doi.org/10.1371/journal.pone.0159161.CrossRefGoogle Scholar
  12. Exhibit Curators. (2005). Places & spaces: Mapping science exhibit. http://scimaps.org.
  13. Farrugia, M., & Quigley, A. (2011). Effective temporal graph layout: A comparative study of animation versus static display methods. Information Visualization, 10(1), 47–64.Google Scholar
  14. Garfield, E. (1955). Citation indexes for science: A new dimension in documentation through association of ideas. Science, 122, 108–111.CrossRefGoogle Scholar
  15. Garfield, E. (1974). ISI’s atlas of science may help students in choice of career in science. Essays of an Information Scientist 1974–1976, 2(38), 311–314. http://www.garfield.library.upenn.edu/essays/v2p311y1974-76.pdf.
  16. Garfield, E. (1981). ISI atlas of science: Biochemistry and molecular biology 1979–1980. Philadelphia, PA: ISI.Google Scholar
  17. Garfield, E. (1987). Mapping the world of nutrition: Citation analysis helps digest the menu of current research. Essays of an Information Scientist, 10, 349. http://www.garfield.library.upenn.edu/essays/v10p349y1987.pdf.
  18. Garfield, E. (1988). Mapping the world of epidemiology: Part 2. The techniques of tracking down disease. Essays of an Information Scientist, 11, 290. http://www.garfield.library.upenn.edu/essays/v11p290y1988.pdf.
  19. Garfield, E., & Shea, J. E. (Eds.). (1984). ISI atlas of science: Biotechnology and molecular genetics 1981/82. Philadelphia: ISI.Google Scholar
  20. Ghani, S., & Elmqvist, N. (2011). Improving revisitation in graphs through static spatial features. In Proceedings of Graphics Interface, pp. 737–743.Google Scholar
  21. Saket, B., Scheidegger, C., Kobourov, S., & Börner, K. (2015). Map-based visualizations increase recall accuracy of data. In EUROGRAPHICS 2015, Zürich, Switzerland, pp. 441–450.Google Scholar
  22. Saket, B., Simonetto, P., Kobourov, S., & Börner, K. (2014). Node, node-link, and node-link-group diagrams: An evaluation. IEEE Visual Analytics Science and Technology, IEEE Information Visualization, and IEEE Scientific Visualization, Paris, France, 20(12), 2231–2240.Google Scholar
  23. Shiffrin, R. M., & Börner, K. (2004). Introduction: Mapping knowledge domains. Proceedings of the National Academy of Sciences of the United States of America, 101(Suppl. 1), 5183–5185.CrossRefGoogle Scholar
  24. Skupin, A., Biberstine, J. R., & Börner, K. (2013). Visualizing the Topical structure of the medical sciences: A self-organizing map approach. PLoS ONE, 8(3), e58779.  https://doi.org/10.1371/journal.pone.0058779.CrossRefGoogle Scholar
  25. Staudt, J., Huifeng, Yu., Light, R., Marschke, G., Börner, K., & Weinberg, B. (2016). High-Impact and Transformative Science (HITS) metrics. Ghent, Belgium: OECD Blue Sky III.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Katy Börner
    • 1
    • 2
    • 3
  • Adam H. Simpson
    • 1
  • Andreas Bueckle
    • 1
  • Robert L. Goldstone
    • 3
    • 4
  1. 1.Cyberinfrastructure for Network Science Center, School of Informatics, Computing, and EngineeringIndiana UniversityBloomingtonUSA
  2. 2.Indiana University Network Science InstituteBloomingtonUSA
  3. 3.Cognitive Science ProgramIndiana UniversityBloomingtonUSA
  4. 4.Department of Psychological and Brain SciencesIndiana UniversityBloomingtonUSA

Personalised recommendations