Scientometrics

, Volume 114, Issue 2, pp 637–650 | Cite as

Eugene Garfield: from the metrics of science to the science of metrics

Article
  • 153 Downloads

Abstract

Quantity and quality are Aristotelian categories. Ever since Galileo, the defining feature of Science is the accurate measure of quantity, e.g., time, length and mass, to begin with. Length and mass are size dependent. Quality remained an elusive category as it is a size-independent feature. It was Archimedes who first brought a revolution in physics by defining density as a size-independent attribute. A similar revolution was effected in the measurement of science when Eugene Garfield introduced the concept of the citation as a unit of measurement and from this, separated quantity (number of publications) from quality (impact). In this article, we interpret impact as a thermodynamic mean instead of a simplistic arithmetic mean. This opens up rich analogies with the conservation laws of mechanics and thermodynamic features linking disorder and unevenness to entropy. Also as in physics, considerations of dimensional homogeneity play a defining role. Without Garfield’s bold initiative, all this will have eluded us for some time.

Keywords

Scientometrics Quality Quantity Performance Indicators Citation Impact Journal evaluation Journal impact factor Exergy 

References

  1. Abbas, A. M. (2011). Analysis of generalized impact factor and indices of journals. Journal of Information Processing Systems, 7, 341–354.CrossRefGoogle Scholar
  2. Abbas, A. M. (2012). Bounds and inequalities relating h-index, g-index, e-index and generalized impact factor: An improvement over existing models. PLoS ONE, 7, e33699.CrossRefGoogle Scholar
  3. Bensman, S. J. (2013). Eugene Garfield, Francis Narin, and PageRank: The Theoretical Bases of the Google Search Engine. arXiv:1312.3872 [cs.IR].
  4. Bergstrom, C. T. (2007). Eigenfactor: Measuring the value and prestige of scholarly journals. College & Research Libraries News, 68(5), 314–316.CrossRefGoogle Scholar
  5. Bergstrom, C. T., West, J. D., & Wiseman, M. A. (2008). The Eigenfactor metrics. Journal of Neuroscience, 28(45), 11433–11434.CrossRefGoogle Scholar
  6. Bollen, J., Rodriguez, M. A., & Van de Sompel, H. (2006). Journal Status. Scientometrics, 69(3), 669–687.CrossRefGoogle Scholar
  7. Braun, T., Glänzel, W., & Schubert, A. (1989). World flash on basic research. Scientometrics, 15(1–2), 13–20.CrossRefGoogle Scholar
  8. Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics, 69(1), 169–173.CrossRefGoogle Scholar
  9. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30(1–7), 107–117.CrossRefGoogle Scholar
  10. Campbell, S. R. (2004). On the concepts of quantity and quality in the history of western thought. In Philosophical Studies in Education SIG at the American Educational Research Association Annual Conference, San Diego, California.Google Scholar
  11. Cronin, B. (1984). The citation process: The role and significance of citations in scientific communication. London: Taylor Graham.Google Scholar
  12. Davis, P. M. (2008). Eigenfactor: Does the principle of repeated improvement result in better estimates than raw citation counts? Journal of the American Society for Information Science and Technology, 59(13), 2186–2188.CrossRefGoogle Scholar
  13. De Bellis, N. (2009). Bibliometrics and citation analysis: From the Science citation index to cybermetrics. Metuchen: Scarecrow Press Incorporated.Google Scholar
  14. De Visscher, A. (2011). What does the g-index really measure? Journal of the American Society for Information Science and Technology, 62(11), 2290–2293.CrossRefGoogle Scholar
  15. Egghe, L. (2006a). An improvement of the h-index: The g-index. ISSI Newsletter, 2(1), 8–9.MathSciNetGoogle Scholar
  16. Egghe, L. (2006b). Theory and practice of the g-index. Scientometrics, 69(1), 131–152.MathSciNetCrossRefGoogle Scholar
  17. Franceschini, F., & Maisano, D. (2010). Criticism on the hg-index. Scientometrics, 82(2), 391–400.CrossRefGoogle Scholar
  18. Garfield, E. (1955). Citation indexes to science: A new dimension in documentation through association of ideas. Science, 122(3159), 108–111.CrossRefGoogle Scholar
  19. Glänzel, W. (2006). On the h-index—A mathematical approach to a new measure of publication activity and citation impact. Scientometrics, 67(2), 315–321.CrossRefGoogle Scholar
  20. Hirsch, J. E. (2005). An index to quantify an individual’s research output. Proceedings of National Academy of Sciences (PNAS), 102(46), 16569–16572.CrossRefMATHGoogle Scholar
  21. Leydesdorff, L., & Bornmann, L. (2011). Integrated impact indicators (I3) compared with impact factors (IFs): An alternative design with policy implications. Journal of the American Society for Information Science and Technology, 62(11), 2133–2146.CrossRefGoogle Scholar
  22. Pinski, G., & Narin, F. (1976). Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Processing and Management, 12(5), 297–312.CrossRefGoogle Scholar
  23. Prathap, G. (2010). Is there a place for a mock h-index? Scientometrics, 84(1), 153–165.CrossRefGoogle Scholar
  24. Prathap, G. (2011a). The Energy–Exergy–Entropy (or EEE) sequences in bibliometric assessment. Scientometrics, 87(3), 515–524.CrossRefGoogle Scholar
  25. Prathap, G. (2011b). Quasity, when quantity has a quality all of its own—Toward a theory of performance. Scientometrics, 88(2), 555–562.CrossRefGoogle Scholar
  26. Price, D. J. S. (1963). Little science, big science. New York: Columbia University Press. ISBN 0-231-08562-1.Google Scholar
  27. Price, D. J. S. (1965). Networks of scientific papers. Science, 149(3683), 510–515.CrossRefGoogle Scholar
  28. Ramanujacharyulu, C. (1964). Analysis of preferential experiments. Psychometrika, 29(3), 257–261.CrossRefMATHGoogle Scholar
  29. Schubert, A. (2009). Transzlációs tudománymetria. Informatio Medicata Budapest.Google Scholar
  30. SCImago. (2007). SJRSCImago Journal & Country Rank. Retrieved July 21, 2015, from http://www.scimagojr.com.
  31. Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103(2684), 677–680.CrossRefMATHGoogle Scholar
  32. Vinkler, P. (1988). Weighted impact of publications and relative contribution score. Two new indicators characterizing publication of countries. Scientometrics, 14(1–2), 161–163.CrossRefGoogle Scholar
  33. Yan, E., & Ding, Y. (2010). Weighted citation: An indicator of an article’s prestige. Journal of the American Society for Information Science and Technology, 61(8), 1635–1643.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Vidya Academy of Science and TechnologyThrissurIndia
  2. 2.A P J Abdul Kalam Technological UniversityThiruvananthapuramIndia

Personalised recommendations