Skip to main content
Log in

Evolving cohesion metrics of a research network on rare diseases: a longitudinal study over 14 years

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Research collaboration is necessary, rewarding, and beneficial. Cohesion between team members is related to their collective efficiency. To assess collaboration processes and their eventual outcomes, agencies need innovative methods—and social network approaches are emerging as a useful analytical tool. We identified the research output and citation data of a network of 61 research groups formally engaged in publishing rare disease research between 2000 and 2013. We drew the collaboration networks for each year and computed the global and local measures throughout the period. Although global network measures remained steady over the whole period, the local and subgroup metrics revealed a growing cohesion between the teams. Transitivity and density showed little or no variation throughout the period. In contrast the following points indicated an evolution towards greater network cohesion: the emergence of a giant component (which grew from just 30 % to reach 85 % of groups); the decreasing number of communities (following a tripling in the average number of members); the growing number of fully connected subgroups; and increasing average strength. Moreover, assortativity measures reveal that, after an initial period where subject affinity and a common geographical location played some role in favouring the connection between groups, the collaboration was driven in the final stages by other factors and complementarities. The Spanish research network on rare diseases has evolved towards a growing cohesion—as revealed by local and subgroup metrics following social network analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aymé, S., & Schmidtke, J. (2007). Networking for rare diseases: A necessity for Europe. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 50(12), 1477–1483. doi:10.1007/s00103-007-0381-9.

    Article  Google Scholar 

  • Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3–4), 590–614. doi:10.1016/S0378-4371(02)00736-7.

    Article  MathSciNet  MATH  Google Scholar 

  • Bettencourt, L. M. A., Kaiser, D. I., & Kaur, J. (2009). Scientific discovery and topological transitions in collaboration networks. Journal of Informetrics, 3(3), 210–221. doi:10.1016/j.joi.2009.03.001.

    Article  Google Scholar 

  • Bian, J., Xie, M., Topaloglu, U., Hudson, T., Eswaran, H., & Hogan, W. (2014). Social network analysis of biomedical research collaboration networks in a CTSA institution. Journal of Biomedical Informatics, 52, 130–140. doi:10.1016/j.jbi.2014.01.015.

    Article  Google Scholar 

  • Bordons, M., Aparicio, J., González-Albo, B., & Díaz-Faes, A. A. (2015). The relationship between the research performance of scientists and their position in co-authorship networks in three fields. Journal of Informetrics, 9(1), 135–144. doi:10.1016/j.joi.2014.12.001.

    Article  Google Scholar 

  • Börner, K., Dall’Asta, L., Ke, W., & Vespignani, A. (2005). Studying the emerging global brain: Analyzing and visualizing the impact of co-authorship teams. Complexity, 10(4), 57–67. doi:10.1002/cplx.20078.

    Article  Google Scholar 

  • Casey-Campbell, M., & Martens, M. L. (2009). Sticking it all together: A critical assessment of the group cohesion–performance literature. International Journal of Management Reviews, 11(2), 223–246. doi:10.1111/j.1468-2370.2008.00239.x.

    Article  Google Scholar 

  • Chiocchio, F., & Essiembre, H. (2009). Cohesion and performance: A meta-analytic review of disparities between project teams, Production teams, and service teams. Small group research, 40(4), 382–420. doi:10.1177/1046496409335103.

  • Cho, A. (2011). Particle physicists’ new extreme teams. Science, 333(6049), 1564–1567. doi:10.1126/science.333.6049.1564.

    Article  Google Scholar 

  • Cooke, N. J., & Hilton, M. L. (2015). Enhancing the effectiveness of team science. Washington, D.C.: National Academies Press. Recuperado a partir de http://www.nap.edu/catalog/19007/enhancing-the-effectiveness-of-team-science.

  • Cugmas, M., Ferligoj, A., & Kronegger, L. (2015). The stability of co-authorship structures. Scientometrics, 106(1), 163–186. doi:10.1007/s11192-015-1790-4.

  • Estrada, E. (2011). The structure of complex networks: Theory and applications. Oxford: University Press.

    Book  Google Scholar 

  • Gallivan, M., & Ahuja, M. (2015). Co-authorship, homophily, and scholarly influence in information systems research. Journal of the Association for Information Systems, 16(12), 980.

    Google Scholar 

  • Ghosh, J., Kshitij, A., & Kadyan, S. (2014). Functional information characteristics of large-scale research collaboration: Network measures and implications. Scientometrics, 102(2), 1207–1239. doi:10.1007/s11192-014-1475-4.

    Article  Google Scholar 

  • Heymann, S. (2014). Gephi. In R. Alhajj & J. Rokne (Eds.), Encyclopedia of social network analysis and mining (pp. 612–625). New York: Springer.

    Google Scholar 

  • Himmelstein, D. S., & Powell, K. (2016). Analysis for “the history of publishing delays” blog post v1.0. Zenodo,. doi:10.5281/zenodo.45516.

    Google Scholar 

  • Hunt, J. D., Whipple, E. C., & McGowan, J. J. (2012). Use of social network analysis tools to validate a resources infrastructure for interinstitutional translational research: A case study. Journal of the Medical Library Association, 100(1), 48–54. doi:10.3163/1536-5050.100.1.009.

    Article  Google Scholar 

  • Kolaczyk, E. D., & Csardi, G. (2014). Statistical analysis of network data with R (Vol. 65). New York: Springer.

    MATH  Google Scholar 

  • Kumar, S. (2015). Efficacy of a giant component in co-authorship networks: Evidence from a Southeast Asian dataset in economics. Aslib Journal of Information Management, 68(1), 19–32. doi:10.1108/AJIM-12-2014-0172.

    Article  Google Scholar 

  • Larivière, V., Gingras, Y., Sugimoto, C. R., & Tsou, A. (2015). Team size matters: Collaboration and scientific impact since 1900. Journal of the Association for Information Science and Technology, 66(7), 1323–1332. doi:10.1002/asi.23266.

    Article  Google Scholar 

  • Laudel, G. (2002). What do we measure by co-authorships? Research Evaluation, 11(1), 3–15. doi:10.3152/147154402781776961.

    Article  Google Scholar 

  • Liu, X., Bollen, J., Nelson, M. L., & Van de Sompel, H. (2005). Co-authorship networks in the digital library research community. Information Processing and Management, 41(6), 1462–1480. doi:10.1016/j.ipm.2005.03.012.

    Article  Google Scholar 

  • Liu, P., & Xia, H. (2015). Structure and evolution of co-authorship network in an interdisciplinary research field. Scientometrics, 103(1), 101–134. doi:10.1007/s11192-014-1525-y.

    Article  MathSciNet  Google Scholar 

  • Ministerio de Sanidad y Consumo. Resolución de 30 de marzo de. (2006) del Instituto de Salud Carlos III, por la que se convocan ayudas destinadas a financiar estructuras estables de investigación cooperativa, en el área de biomedicina y ciencias de la salud, en el marco de la iniciativa Ingenio 2010, programa Consolider, acciones CIBER, 83 Boletín Oficial del Estado (pp. 13770–13777).

  • Newman, M. E. J. (2001a). Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. Physical Review E, 64(1), 016132. doi:10.1103/PhysRevE.64.016132.

    Article  Google Scholar 

  • Newman, M. E. J. (2001b). Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E, 64(1), 016131. doi:10.1103/PhysRevE.64.016131.

    Article  Google Scholar 

  • Newman, M. E. J. (2003a). Mixing patterns in networks. Physical Review E, 67(2), 026126. doi:10.1103/PhysRevE.67.026126.

    Article  MathSciNet  Google Scholar 

  • Newman, M. E. J. (2003b). The structure and function of complex networks. SIAM Review, 45, 167–256.

    Article  MathSciNet  MATH  Google Scholar 

  • OECD. (2010). Measuring innovation: A new perspective. Paris: OCDE Publishing.

    Google Scholar 

  • Ramasco, J., & Morris, S. (2006). Social inertia in collaboration networks. Physical Review E, 73(1), 016122. doi:10.1103/PhysRevE.73.016122.

    Article  Google Scholar 

  • Sonnenwald, D. H. (2007). Scientific collaboration. Annual Review of Information Science and Technology, 41(1), 643–681. doi:10.1002/aris.2007.1440410121.

    Article  Google Scholar 

  • Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316(5827), 1036–1039. doi:10.1126/science.1136099.

    Article  Google Scholar 

Download references

Acknowledgments

The Spanish Ministry of Economics and Competitiveness partially supported this research (Grant Number ECO2014-59381-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos B. Amat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amat, C.B., Perruchas, F. Evolving cohesion metrics of a research network on rare diseases: a longitudinal study over 14 years. Scientometrics 108, 41–56 (2016). https://doi.org/10.1007/s11192-016-1952-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-016-1952-z

Keywords

Navigation