, Volume 105, Issue 1, pp 623–643 | Cite as

An algorithmic historiography of the Ebola research specialty: mapping the science behind Ebola

  • Nicholas V. Olijnyk


The objective of this paper was to identify the intellectual profile of the Ebola research specialty and its behavior from its inception to 2014. This objective was met by chronologically mapping the information flows within the specialty using bibliometric and citation data extracted from 1638 Ebola research documents in conjunction with Histcite to produce an algorithmic historiography representing a view of the Ebola specialty’s intellectual profile and evolution. The present study was guided by the following research questions. What is the bibliometric profile of the Ebola specialty in terms of publication output and the impact of its authors, journals, institutions, countries, and years? What influential Ebola research has been produced since its discovery, and how has the research evolved? The most significant results show the Ebola specialty citation network as a small-world and highly cohesive network. The Ebola specialty citation network was found to be symmetrical in structure and segmented into four distinct cliques representing specific research focuses (i.e., uncovering divergent strains, immune responses and vaccines, Ebola’s pathogenesis, Ebola’s molecular structure and physiology). Key authors and contributing journals were identified. The most substantial contributions to the specialty were from the government and academia. The Ebola specialty had a slow publication output and oscillating citation activity for the first few decades, coinciding with several outbreaks. The greatest production of Ebola research articles occurred after 2000, along with exponential citation behavior.


Algorithmic historiography Bibliometrics Ebola virus Virology 

Mathematics Subject Classification


JEL Classification

Y8 I1 



The author acknowledges Dr. Heting Chu at Long Island University for providing an initial review and suggestions. No financial assistance was received for the present research.

Supplementary material

11192_2015_1688_MOESM1_ESM.doc (68 kb)
Supplementary material 1 (DOC 68 kb)


  1. Alvarez, C. P., Lasala, F., Carrillo, J., Muñiz, O., Corbí, A. L., & Delgado, R. (2002). C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. Journal of Virology, 76(13), 6841–6844. doi: 10.1128/JVI.76.13.6841-6844.2002.CrossRefGoogle Scholar
  2. Baize, S., Leroy, E. M., Georges-Courbot, M. C., Capron, M., Lansoud-Soukate, J., Debré, P., et al. (1999). Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nature Medicine, 5(4), 423–426. doi: 10.1038/7422.CrossRefGoogle Scholar
  3. Basler, C. F., Wang, X., Mühlberger, E., Volchkov, V., Paragas, J., Klenk, H. D., et al. (2000). The Ebola virus VP35 protein functions as a type IIFN antagonist. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 12289–12294. doi: 10.1073/pnas.220398297.CrossRefGoogle Scholar
  4. Basler, C. F., Mikulasova, A., Martinez-Sobrido, L., Paragas, J., Mühlberger, E., Bray, M., et al. (2003). The Ebola virus VP35 protein inhibits activation of interferon regulatory factor 3. Journal of Virology, 77(14), 7945–7956. doi: 10.1128/JVI.77.14.7945-7956.2003.CrossRefGoogle Scholar
  5. Bavari, S., Bosio, C. M., Wiegand, E., Ruthel, G., Will, A. B., Geisbert, T. W., et al. (2002). Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses. Journal of Experimental Medicine, 195(5), 593–602. doi: 10.1084/jem.20011500.CrossRefGoogle Scholar
  6. Borio, L., Inglesby, T., Peters, C. J., Schmaljohn, A. L., Hughes, J. M., Jahrling, P. B., et al. (2002). Hemorrhagic fever viruses as biological weapons: Medical and public health management. Journal of the American Medical Association, 287(18), 2391–2405. doi: 10.1001/jama.287.18.2391.CrossRefGoogle Scholar
  7. Bray, M., Davis, K., Geisbert, T., Schmaljohn, C., & Huggins, J. (1998). A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. Journal of Infectious Diseases, 178(3), 651–661. doi: 10.1086/515386.CrossRefGoogle Scholar
  8. Chandran, K., Sullivan, N. J., Felbor, U., Whelan, S. P., & Cunningham, J. M. (2005). Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science, 308(5728), 1643–1645. doi: 10.1126/science.1110656.CrossRefGoogle Scholar
  9. Chen, C., McCain, K., White, H., & Lin, X. (2002). Mapping scientometrics (1981–2001). Proceedings of the American Society for Information Science and Technology, 39(1), 25–34. doi: 10.1002/meet.1450390103.CrossRefGoogle Scholar
  10. Chubin, D. E. (1976). The conceptualization of scientific specialties. Sociological Quarterly, 4, 448–476.CrossRefGoogle Scholar
  11. Connolly, B. M., Steele, K. E., Davis, K. J., Geisbert, T. W., Kell, W. M., Jaax, N. K., et al. (1999). Pathogenesis of experimental Ebola virus infection in guinea pigs. Journal of Infectious Diseases, 179(Suppl. 1), S203–S217. doi: 10.1086/514305.CrossRefGoogle Scholar
  12. Crane, D. (1972). Invisible colleges: Diffusion of knowledge in scientific communities. Chicago: University of Chicago Press.Google Scholar
  13. De Bellis, N. (2009). Bibliometrics and citation analysis. Lanham, MD: The Scarecrow Press Inc.Google Scholar
  14. de Solla Price, D. (1961). Science since Babylon. New Haven: Yale University Press.Google Scholar
  15. de Solla Price, D. J. (1963). Little science, big science. New York: Columbia University Press.Google Scholar
  16. de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515. doi: 10.1126/science.149.3683.510.CrossRefGoogle Scholar
  17. de Solla Price, D. J. (1969). Measuring the size of science. Proceedings of the Israel Academy of Science, 4, 98–111.Google Scholar
  18. de Solla Price, D. J. (1978). Toward a model for scientific indicators. In Y. Elkana, J. Lederberg, R. K. Merton, A. Thackray, & H. Zuckerman (Eds.), Toward a metric of science: The advent of scientific indicators (pp. 69–96). New York: Wiley.Google Scholar
  19. Elliott, L. H., Kiley, M. P., & McCormick, J. B. (1985). Descriptive analysis of Ebola virus proteins. Virology, 147(1), 169–176. doi: 10.1016/0042-6822(85)90236-3.CrossRefGoogle Scholar
  20. Feldmann, H., Bugany, H., Mahner, F., Klenk, H. D., Drenckhahn, D., & Schnittler, H. J. (1996). Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. Journal of Virology, 70(4), 2208–2214.Google Scholar
  21. Feldmann, H., Jones, S., Klenk, H. D., & Schnittler, H. J. (2003). Ebola virus: From discovery to vaccine. Nature Reviews Immunology, 3(8), 677–685. doi: 10.1038/nri1154.CrossRefGoogle Scholar
  22. Garfield, E. (1979). Citation indexing: its theory and application in science, technology, and humanities. New York: John Wiley & Sons.Google Scholar
  23. Garfield, E. (2004). Historiographic mapping of knowledge domains literature. Journal of Information Science, 30(2), 119–145. doi: 10.1177/0165551504042802.CrossRefGoogle Scholar
  24. Garfield, E. (2006). Histcite: A software tool for informetric analysis of citation linkage. Information Wissenschaft und Praxis, 57(8), 391.Google Scholar
  25. Garfield, E. (2009). From the science of science to scientometrics: Visualizing the history of science with HistCite software. Journal of Informetrics, 3(3), 173–179. doi: 10.1016/j.joi.2009.03.009.CrossRefGoogle Scholar
  26. Gear, J. S., Cassel, G. A., Gear, A. J., Trappler, B., Clausen, L., Meyers, A. M., et al. (1975). Outbreak of Marburg virus disease in Johannesburg. British Medical Journal, 4(5995), 489–493. doi: 10.1136/bmj.4.5995.489.CrossRefGoogle Scholar
  27. Geisbert, T. W., & Jahrling, P. B. (1995). Differentiation of filoviruses by electron microscopy. Virus Research, 39(2–3), 129–150. doi: 10.1016/0168-1702(95)00080-1.CrossRefGoogle Scholar
  28. Geisbert, T. W., Hensley, L. E., Gibb, T. R., Steele, K. E., Jaax, N. K., & Jahrling, P. B. (2000). Apoptosis induced in vitro and in vivo during infection by Ebola and Marburg viruses. Laboratory Investigation, 80(2), 171–186. doi: 10.1038/labinvest.3780021.CrossRefGoogle Scholar
  29. Geisbert, T. W., Hensley, L. E., Larsen, T., Young, H. A., Reed, D. S., Geisbert, J. B., et al. (2003). Pathogenesis of Ebola hemorrhagic fever in cynomolgus macaques: evidence that dendritic cells are early and sustained targets of infection. American Journal of Pathology, 163(6), 2347–2370. doi: 10.1016/S0002-9440(10)63591-2.CrossRefGoogle Scholar
  30. Glynn, R. W., Chin, J. Z., Kerin, M. J., & Sweeney, K. J. (2010). Representation of cancer in the medical literature—a bibliometric analysis. PLoS ONE, 5(11), e13902. doi: 10.1371/journal.pone.0013902.CrossRefGoogle Scholar
  31. Harande, Y. I. (2011). Exploring the literature of diabetes in Nigeria: A bibliometrics study. African Journal of Diabetes Medicine, 19, 8–11.Google Scholar
  32. Harty, R. N., Brown, M. E., Wang, G., Huibregtse, J., & Hayes, F. P. (2000). A PPxY motif within the VP40 protein of Ebola virus interacts physically and functionally with a ubiquitin ligase: implications for filovirus budding. Proceedings of the National Academy of Sciences of the United States of America, 97(25), 13871–13876. doi: 10.1073/pnas.250277297.CrossRefGoogle Scholar
  33. Heymann, D. L., Barakamfitiye, D., Szczeniowski, M., Muyembe-Tamfum, J. J., Bele, O., & Rodier, G. (1999). Ebola hemorrhagic fever: Lessons from Kikwit, Democratic Republic of the Congo. Journal of Infectious Diseases, 179(Suppl. 1), S283–S286. doi: 10.1086/514287.CrossRefGoogle Scholar
  34. Jaax, N. K., Davis, K. J., Geisbert, T. J., Vogel, P., Jaax, G. P., Topper, M., et al. (1996). Lethal experimental infection of rhesus monkeys with Ebola-zaire (Mayinga) virus by the oral and conjunctival route of exposure. Archives of Pathology and Laboratory Medicine, 120(2), 140–155.Google Scholar
  35. Jahrling, P. B., Geisbert, T. W., Dalgard, D. W., Johnson, E. D., Ksiazek, T. G., Hall, W. C., et al. (1990). Preliminary-report: Isolation of Ebola virus from monkeys imported to USA. Lancet, 335(8688), 502–505. doi: 10.1016/0140-6736(90)90737-P.CrossRefGoogle Scholar
  36. Jasenosky, L. D., Neumann, G., Lukashevich, I., & Kawaoka, Y. (2001). Ebola virus VP40-induced particle formation and association with the lipid bilayer. Journal of Virology, 75(11), 5205–5214. doi: 10.1128/JVI.75.11.5205-5214.2001.CrossRefGoogle Scholar
  37. Johnson, K. M., Webb, P. A., Lange, J. V., & Murphy, F. A. (1977). Isolation and partial characterisation of a new virus causing acute hemorrhagic fever in Zaire. Lancet, 1(8011), 569–571.CrossRefGoogle Scholar
  38. Johnson, E., Jaax, N., White, J., & Jahrling, P. (1995). Lethal experimental infections of rhesus monkeys by aerosolized Ebola virus. International Journal of Experimental Pathology, 76(4), 227–236.Google Scholar
  39. Jones, S. M., Feldmann, H., Ströher, U., Geisbert, J. B., Fernando, L., Grolla, A., et al. (2005). Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nature Medicine, 11(7), 786–790. doi: 10.1038/nm1258.CrossRefGoogle Scholar
  40. Khan, A. S., Tshioko, F. K., Heymann, D. L., Le Guenno, B., Nabeth, P., Kerstiëns, B., et al. (1999). The reemergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995. Journal of Infectious Diseases, 179(Suppl. 1), S76–S86. doi: 10.1086/514306.CrossRefGoogle Scholar
  41. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. Journal of the ACM, 46(5), 604–632. doi: 10.1145/324133.324140.MathSciNetCrossRefMATHGoogle Scholar
  42. Ksiazek, T. G., Rollin, P. E., Williams, A. J., Bressler, D. S., Martin, M. L., Swanepoel, R., et al. (1999). Clinical virology of Ebola hemorrhagic fever (EHF): Virus, virus antigen, and IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of the Congo. Journal of Infectious Diseases, 179(Suppl. 1), S177–S187. doi: 10.1086/514321.CrossRefGoogle Scholar
  43. Le Guenno, B., Formenty, P., Wyers, M., Gounon, P., Walker, F., & Boesch, C. (1995). Isolation and partial characterisation of a new strain of Ebola virus. Lancet, 345(8960), 1271–1274. doi: 10.1016/S0140-6736(95)90925-7.CrossRefGoogle Scholar
  44. Lee, J. E., Fusco, M. L., Hessell, A. J., Oswald, W. B., Burton, D. R., & Saphire, E. O. (2008). Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 454(7201), 177–182. doi: 10.1038/nature07082.CrossRefGoogle Scholar
  45. Leroy, E. M., Baize, S., Volchkov, V. E., Fisher-Hoch, S. P., Georges-Courbot, M. C., Lansoud-Soukate, J., et al. (2000). Human asymptomatic Ebola infection and strong inflammatory response. Lancet, 355(9222), 2210–2215. doi: 10.1016/S0140-6736(00)02405-3.CrossRefGoogle Scholar
  46. Leroy, E. M., Rouquet, P., Formenty, P., Souquière, S., Kilbourne, A., Froment, J. M., et al. (2004). Multiple Ebola virus transmission events and rapid decline of Central African wildlife. Science, 303(5656), 387–390. doi: 10.1126/science.1092528.CrossRefGoogle Scholar
  47. Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., et al. (2005). Fruit bats as reservoirs of Ebola virus. Nature, 438(7068), 575–576. doi: 10.1038/438575a.CrossRefGoogle Scholar
  48. MacRoberts, M. H., & MacRoberts, B. R. (1996). Problems of citation analysis. Scientometrics, 36(3), 435–444. doi: 10.1007/BF02129604.CrossRefGoogle Scholar
  49. Malashkevich, V. N., Schneider, B. J., McNally, M. L., Milhollen, M. A., Pang, J. X., & Kim, P. S. (1999). Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-angstrom resolution. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 2662–2667. doi: 10.1073/pnas.96.6.2662.CrossRefGoogle Scholar
  50. Merton, R. K. (1968). The Matthew effect in science: The reward and communication systems of science are considered. Science, 159(3810), 56–63. doi: 10.1126/science.159.3810.56.CrossRefGoogle Scholar
  51. Moed, H. F. (2005). Citation analysis in research evaluation. Dordrecht: Springer.Google Scholar
  52. Morris, S. A., & Van der Veer Martens, B. (2008). Mapping research specialties. Annual Review of Information Science and Technology, 42(1), 213–295. doi: 10.1002/aris.2008.1440420113.CrossRefGoogle Scholar
  53. Mühlberger, E., Weik, M., Volchkov, V. E., Klenk, H. D., & Becker, S. (1999). Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. Journal of Virology, 73(3), 2333–2342.Google Scholar
  54. Noda, T., Sagara, H., Suzuki, E., Takada, A., Kida, H., & Kawaoka, Y. (2002). Ebola virus VP40 drives the formation of virus-like filamentous particles along with GP. Journal of Virology, 76(10), 4855–4865. doi: 10.1128/JVI.76.10.4855-4865.2002.CrossRefGoogle Scholar
  55. Pouris, A., & Pouris, A. (2011). A scientometrics of a pandemic: HIV/AIDS research in South Africa and the world. Scientometrics, 86, 541–552. doi: 10.1007/s11192-010-0277-6.CrossRefGoogle Scholar
  56. Sanchez, A., Kiley, M. P., Holloway, B. P., & Auperin, D. D. (1993). Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Research, 29(3), 215–240. doi: 10.1016/0168-1702(93)90063-S.CrossRefGoogle Scholar
  57. Sanchez, A., Trappier, S. G., Mahy, B. W., Peters, C. J., & Nichol, S. T. (1996). The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proceedings of the National Academy of Sciences of the United States of America, 93(8), 3602–3607. doi: 10.1073/pnas.93.8.3602.CrossRefGoogle Scholar
  58. Sanchez, A., Yang, Z. Y., Xu, L., Nabel, G. J., Crews, T., & Peters, C. J. (1998). Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. Journal of Virology, 72(8), 6442–6447.Google Scholar
  59. Schloegl, C., & Stock, W. G. (2004). Impact and relevance of LIS journals: A scientometric analysis of international and German-language LIS journals-citation analysis verses reader survey. Journal of the American Society for Information Science and Technology, 55(13), 1155–1168. doi: 10.1002/asi.20070.CrossRefGoogle Scholar
  60. Schornberg, K., Matsuyama, S., Kabsch, K., Delos, S., Bouton, A., & White, J. (2006). Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. Journal of Virology, 80(8), 4174–4178. doi: 10.1128/JVI.80.8.4174-4178.2006.CrossRefGoogle Scholar
  61. Simmons, G., Wool-Lewis, R. J., Baribaud, F., Netter, R. C., & Bates, P. (2002). Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. Journal of Virology, 76(5), 2518–2528. doi: 10.1128/jvi.76.5.2518-2528.2002.CrossRefGoogle Scholar
  62. Smith, D. H., Isaacson, M., Johnson, K. M., Bagshawe, A., Johnson, K. M., Swanapoel, R., et al. (1982). Marburg-virus disease in Kenya. Lancet, 1(8276), 816–820. doi: 10.1016/S0140-6736(82)91871-2.CrossRefGoogle Scholar
  63. Sullivan, N. J., Sanchez, A., Rollin, P. E., Yang, Z. Y., & Nabel, G. J. (2000). Development of a preventive vaccine for Ebola virus infection in primates. Nature, 408(6812), 605–609. doi: 10.1038/35046108.CrossRefGoogle Scholar
  64. Sullivan, N. J., Geisbert, T. W., Geisbert, J. B., Xu, L., Yang, Z. Y., Roederer, M., et al. (2003). Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature, 424(6949), 681–684. doi: 10.1038/nature01876.CrossRefGoogle Scholar
  65. Tabah, A. (1999). Literature dynamics: Studies on growth, diffusion, and epidemics. Annual Review of Information Science and Technology, 34, 249–286.Google Scholar
  66. Takada, A., Robison, C., Goto, H., Sanchez, A., Murti, K. G., Whitt, M. A., et al. (1997). A system for functional analysis of Ebola virus glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14764–14769. doi: 10.1073/pnas.94.26.14764.CrossRefGoogle Scholar
  67. Thomson Reuters. (2013). Histcite. Accessed 1 Oct 2014.
  68. Timmins, J., Scianimanico, S., Schoehn, G., & Weissenhorn, W. (2001). Vesicular release of Ebola virus matrix protein VP40. Virology, 283(1), 1–6. doi: 10.1006/viro.2001.0860.CrossRefGoogle Scholar
  69. United States Centers for Disease Control and Prevention (2014). Outbreaks chronology: Ebola virus disease. Accessed 15 Oct 2014.
  70. Volchkov, V. E., Becker, S., Volchkova, V. A., Ternovoj, V. A., Kotov, A. N., Netesov, S. V., et al. (1995). GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology, 214, 421–430.CrossRefGoogle Scholar
  71. Volchkov, V. E., Feldmann, H., Volchkova, V. A., & Klenk, H. D. (1998). Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proceedings of the National Academy of Sciences of the United States of America, 95(10), 5762–5767. doi: 10.1073/pnas.95.10.5762.CrossRefGoogle Scholar
  72. Volchkov, V. E., Volchkova, V. A., Muhlberger, E., Kolesnikova, L. V., Weik, M., Dolnik, O., et al. (2001). Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science, 291(5510), 1965–1969. doi: 10.1126/science.1057269.CrossRefGoogle Scholar
  73. Weissenhorn, W., Carfí, A., Lee, K. H., Skehel, J. J., & Wiley, D. C. (1998). Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Molecular Cell, 2(5), 605–616. doi: 10.1016/S1097-2765(00)80159-8.CrossRefGoogle Scholar
  74. Wilson, J. A., Hevey, M., Bakken, R., Guest, S., Bray, M., Schmaljohn, A. L., et al. (2000). Epitopes involved in antibody-mediated protection from Ebola virus. Science, 287(5458), 1664–1666. doi: 10.1126/science.287.5458.1664.CrossRefGoogle Scholar
  75. Yang, Z., Delgado, R., Xu, L., Todd, R. F., Nabel, E. G., Sanchez, A., et al. (1998). Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science, 279(5353), 1034–1037. doi: 10.1126/science.279.5353.1034.CrossRefGoogle Scholar
  76. Yang, Z. Y., Duckers, H. J., Sullivan, N. J., Sanchez, A., Nabel, E. G., & Nabel, G. J. (2000). Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nature Medicine, 6(8), 886–889. doi: 10.1038/78645.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Information StudiesLong Island UniversityBrookvilleUSA

Personalised recommendations