Skip to main content
Log in

Detecting the intellectual structure of library and information science based on formal concept analysis

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Detecting intellectual structure of a knowledge domain is valuable to track the dynamics of scientific research. Formal concept analysis (FCA) provides a new perspective for knowledge discovery and data mining. In this paper we introduce a FCA-based approach to detect intellectual structure of library and information science (LIS). Our approach relies on the mathematical theory which formulates the understanding of “concept” as a unit of extension (scholars) and intension (keywords) as a way of modelling the intellectual structure of a domain. By analyzing the papers published in sixteen prominent journals of LIS domain from 2001 to 2013, the intellectual structure of LIS in the new century has been identified and visualized. Nine major research themes of LIS were detected together with the core keywords and authors to describe each theme. The significant advantage of our approach is that the mathematical formulae produce a conceptual structure which automatically provides generalization and specialization relationships among the concepts. This provides additional information not available from other methods, especially when shared interests of authors from different granularities are also visualized in concept lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://conexp.sourceforge.net/.

References

  • Ahlgren, P., & Jarneving, B. (2008). Bibliographic coupling, common abstract stems and clustering: A comparison of two document–document similarity approaches in the context of science mapping. Scientometrics, 76(2), 273–290. doi:10.1007/s11192-007-1935-1.

    Article  Google Scholar 

  • Assefa, S. G., & Rorissa, A. (2013). A bibliometric mapping of the structure of STEM education using co-word analysis. Journal of the American Society for Information Science and Technology, 64(12), 2513–2536. doi:10.1002/asi.22917.

    Article  Google Scholar 

  • Åström, F. (2007). Changes in the LIS research front: Time-sliced cocitation analyses of LIS journal articles, 1990–2004. Journal of the American Society for Information Science and Technology, 58(7), 947–957. doi:10.1002/asi.20567.

    Article  Google Scholar 

  • Bagley, P. R. (1968). Extent of programming language concepts. University City Science Center technical report, November 1968.

  • Bates, M. J., & Maack, M. N. (2010). Encyclopedia of library and information sciences. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Chang, Y. W., & Huang, M. H. (2012). A study of the evolution of interdisciplinarity in library and information science: Using three bibliometric methods. Journal of American Society for Information Science and Technology, 63(1), 22–33.

    Article  Google Scholar 

  • Chen, L. C., & Lien, Y. H. (2011). Using author co-citation analysis to examine the intellectual structure of e-learning: A MIS perspective. Scientometrics, 89(3), 867–886. doi:10.1007/s11192-011-0458-y.

    Article  Google Scholar 

  • Ganter, B., & Wille, R. (2012). Formal concept analysis: Mathematical foundations[M] (p. 2012). Berlin: Springer.

    Google Scholar 

  • Gao, J. P., Ding, K., Teng, L., & Pang, J. (2012). Hybrid documents co-citation analysis: Making sense of the interaction between science and technology in technology diffusion. Scientometrics, 93(2), 459–471. doi:10.1007/s11192-012-0691-z.

    Article  Google Scholar 

  • Garfield, E. (2004). Historiographic mapping of knowledge domains literature. Journal of Information Science, 30(2), 119–145. doi:10.1177/0165551504042802.

    Article  Google Scholar 

  • Godin, R., Missaoui, R., & Alaoui, H. (1995). Incremental concept formation algorithms based on Galois (concept) lattices. Computational Intelligence, 11(2), 246–267. doi:10.1111/j.1467-8640.1995.tb00031.x.

    Article  Google Scholar 

  • Hood, W. W., & Wilson, C. S. (2001). The literature of bibliometrics, scientometrics, and informetrics. Scientometrics, 52(2), 291–314. doi:10.1023/A:1017919924342.

    Article  Google Scholar 

  • Hu, C. P., Hu, J. M., Deng, S. L., & Liu, Y. (2013). A co-word analysis of library and information science in China. Scientometrics, 97(2), 369–382. doi:10.1007/s11192-013-1076-7.

    Article  Google Scholar 

  • Hu, C. P., Hu, J. M., Gao, Y., & Zhang, Y. K. (2011). A journal co-citation analysis of library and information science in China. Scientometrics, 86(3), 657–670. doi:10.1007/s11192-010-0313-6.

    Article  Google Scholar 

  • Janssens, F., Leta, J., Glanzel, W., & Moor, B. D. (2006). Towards mapping library and information science. Information Processing and Management, 42(6), 1614–1642. doi:10.1016/j.ipm.2006.03.025.

    Article  Google Scholar 

  • Kedrov, B. M. (1980). On modern classification of sciences. Philosophic Issues, 10, 85–103.

    MathSciNet  Google Scholar 

  • Kuznetsov, S. O., & Obiedkov, S. A. (2002). Comparing performance of algorithms for generating concept lattices. Journal of Experimental and Theoretical Artificial Intelligence, 14(2–3), 189–216. doi:10.1080/09528130210164170.

    Article  MATH  Google Scholar 

  • Larivière, V., Sugimoto, C. R., & Cronin, B. (2012). A bibliometric chronicling of library and information science’s first hundred years. Journal of the American Society for Information Science and Technology, 63(5), 997–1016. doi:10.1002/asi.22645.

    Article  Google Scholar 

  • Li, H. Y., Cui, L., Cui, M., & Tong, Y. Y. (2010). Active research fields of acupuncture research: A document co-citation clustering analysis of acupuncture literature. Alternative Therapies in Health and Medicine, 16(6), 38–45.

    Google Scholar 

  • Liu, Z. H., & Zhang, Z. Q. (2010). Author keyword coupling analysis: An empirical research. Journal of the China Society for Scientific and Technical Information, 29(2), 268–275. (in Chinese).

    Google Scholar 

  • Ma, R. M. (2012). Author bibliographic coupling analysis: A test based on a Chinese academic database. Journal of Informetrics, 6(4), 532–542. doi:10.1016/j.joi.2012.04.006.

    Article  Google Scholar 

  • Milojević, S., Sugimoto, C. R., Yan, E., & Ding, Y. (2011). The cognitive structure of library and information science: Analysis of article title words. Journal of the American Society for Information Science and Technology, 62(10), 1933–1953. doi:10.1002/asi.21602.

    Article  Google Scholar 

  • Moya-Anégon, F., Herrero-Solana, V., & Jimenez-Contreras, E. (2006). A connectionist and multivariate approach to science maps: The SOM, clustering and MDS applied to library and information science research. Journal of Information Science, 32(1), 63–77. doi:10.1177/0165551506059226.

    Article  Google Scholar 

  • Mustafee, N., Katsaliaki, K., & Fishwick, P. (2014). Exploring the modelling and simulation knowledge base through journal co-citation analysis. Scientometrics, 98(3), 2145–2159. doi:10.1007/s11192-013-1136-z.

    Article  Google Scholar 

  • Nicolai, J. F., & Torben, P. (2003). The MNC as knowledge structure: The roles of knowledge sources and organizational instruments in MNC knowledge management. Danish Research Unit for Industrial Dynamics, 2003(5), 1–33.

    Google Scholar 

  • Price, D. J. S. (1965). The scientific foundations of science policy. Nature, 206(4), 233–238. doi:10.1038/206233a0.

    Article  Google Scholar 

  • Solntseff, N., & Yezerski, A. (1974). A survey of extensible programming languages. Annual review in automatic programming, 7, 267–307. doi:10.1016/0066-4138(74)90001-9.

    Article  MathSciNet  Google Scholar 

  • Thelwall, M. (2008). Quantitative comparisons of search engine results. Journal of the American Society for Information Science and Technology, 59(11), 1702–1710. doi:10.1002/asi.20834.

    Article  Google Scholar 

  • White, H. D., & Griffith, B. C. (1981). Author cocitation: A literature measure of intellectual structure. Journal of the American Society for information Science, 32(3), 163–171. doi:10.1002/asi.4630320302.

    Article  Google Scholar 

  • White, H. D., & McCain, K. W. (1998). Visualizing a discipline: An author co-citation analysis of information science, 1972–1995. Journal of the American society for information science, 49(4), 327–355. doi:10.1002/(SICI)1097-4571(19980401)49:4<327:AID-ASI4>3.0.CO;2-W.

    Google Scholar 

  • Wille, R. (1982). Restructuring lattice theory: An approach based on hierarchies of concepts. In I. Rival (Ed.), Ordered sets (pp. 445–470). Dordrecht (Vol. 83 of NATO Advanced Studies Institute), Boston: Reidel.

  • Wille, R. (2005). Formal concept analysis as mathematical theory of concepts and concept hierarchies. In B. Ganter, G. Stumme, & R. Wille (Eds.), Formal concept analysis: Foundations and applications, state-of-the-art survey (pp. 1–33). Berlin: Springer.

    Chapter  Google Scholar 

  • Yang, B., & Sun, Y. (2013). An exploration of link-based knowledge map in academic web space. Scientometrics, 96(1), 239–253. doi:10.1007/s11192-012-0919-y.

    Article  Google Scholar 

  • Yin, Z. M., & Ma, R. M. (2009). Review of the application research of SNA on the library and information science in China. Document, Information and Knowledge, 2009(6), 64–69. (in Chinese).

    MathSciNet  Google Scholar 

  • Zhao, D., & Strotmann, A. (2008a). Evolution of research activities and intellectual influences in information science 1996–2005: Introducing author bibliographic-coupling analysis. Journal of the American Society for Information Science and Technology, 59(13), 2070–2086. doi:10.1002/asi.20910.

    Article  Google Scholar 

  • Zhao, D., & Strotmann, A. (2008b). Information science during the first decade of the web: An enriched author cocitation analysis. Journal of the American Society for Information Science and Technology, 59(6), 916–937. doi:10.1002/asi.20799.

    Article  Google Scholar 

  • Zhu, Q. H., & Li, L. (2008). Social network analysis and the application achievement of SNA in information science. Information Studies: Theory and Application, 31(2), 179–183. (in Chinese).

    Google Scholar 

Download references

Acknowledgments

This project is supported by National Natural Science Foundation of China (71203164) and the Fundamental Research Funds for the Central Universities (2012GSP058, Wuhan University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Wu, Q., Mu, X. et al. Detecting the intellectual structure of library and information science based on formal concept analysis. Scientometrics 104, 737–762 (2015). https://doi.org/10.1007/s11192-015-1629-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-015-1629-z

Keywords

Navigation