, Volume 103, Issue 3, pp 1003–1022 | Cite as

Collaborative interdisciplinary astrobiology research: a bibliometric study of the NASA Astrobiology Institute



This study aims to undertake a bibliometric investigation of the NASA Astrobiology Institute (NAI) funded research that was published between 2008 and 2012 (by teams of Cooperative Agreement Notice Four and Five). For this purpose, the study creates an inventory of publications co-authored through NAI funding and investigates journal preferences, international and institutional collaboration, and citation behaviors of researchers to reach a better understanding of interdisciplinary and collaborative astrobiology research funded by the NAI. Using the NAI annual reports, 1210 peer-reviewed publications are analyzed. The following conclusions are drawn: (1) NAI researchers prefer publishing in high-impact multidisciplinary journals. (2) Astronomy and astrophysics are the most preferred categories to publish based on Web of Science subject categories. (3) NAI is indeed a virtual institution; researchers collaborate with other researchers outside their organization and in some cases outside the U.S. (4) There are prominent scholars in the NAI co-author network but none of them dominates astrobiology.


Bibliometrics Astrobiology NAI Social network analysis CiteSpace VosViewer 



This study was supported by the NASA Astrobiology Institute. In addition, we would like to thank to Thomson Reuters for making their relevant bibliometric datasets available to us.


  1. AIRFrame. (2014). Astrobiology integrative research framework project. Accessed January 28, 2014.
  2. Al, U., Taşkın, Z., & Düzyol, G. (2012). Use of social network analysis in bibliometric researches. BOBCATSSS 2012. In Information on E-motion (pp. 40–44). BOBCATSSS 2012, Amsterdam, January 23–25, 2012.Google Scholar
  3. Benner, S. A., Bains, W., & Seager, S. (2013). Models and standards of proff in cross-disciplinary science: The case of arsenic DNA. Astrobiology, 13, 510–513.CrossRefGoogle Scholar
  4. Blumberg, B. (2003). The NASA Astrobiology Institute: Early history and organization. Astrobiology, 3, 463–470.CrossRefGoogle Scholar
  5. Boyack, K. W., Klavans, R., & Börner, K. (2005). Mapping the backbone of science. Scientometrics, 64(3), 351–374.CrossRefGoogle Scholar
  6. Brazelton, W. J., & Sullivan, W. T. (2009). Understanding the nineteenth century origins of disciplines: Lessons for astrobiology today? International Journal of Astrobiology, 8, 257–266.CrossRefGoogle Scholar
  7. Carpenter, M., Bauer, T., & Erdogan, B. (2009). Principles of management. Washington: Flat World Knowledge.Google Scholar
  8. Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57, 359–377.CrossRefGoogle Scholar
  9. Chen, C. (2014a). CiteSpace: Visualizing patterns and trends in scientific literature. Accessed December 22, 2014.
  10. Chen, C. (2014b). The CiteSpace manual. Accessed December 22, 2014.
  11. Chen, C., Song, I.-Y., Yuan, X., & Zhang, J. (2008). The thematic and citation landscape of data and knowledge engineering (1985–2007). Data & Knowledge Engineering, 67, 234–259.CrossRefGoogle Scholar
  12. Des Marais, D., Nuth, J. A., Allamandola, L. J., Boss, A. P., Farmer, J. D., Hoehler, T. M., et al. (2008). The NASA astrobiology roadmap. Astrobiology, 8(4), 715–730.CrossRefGoogle Scholar
  13. Gowanlock, M., & Gazan, R. (2013). Assessing researcher interdisciplinarity: A case study of the University of Hawaii NASA Astrobiology Institute. Scientometrics, 94, 133–161.CrossRefGoogle Scholar
  14. Hall, K. L., Stokols, D., Stipelman, B. A., Vogel, A., Feng, A., Masimore, B., et al. (2012). Does team science add value? A bibliometric study comparing the productivity of NIH-funded team science center grants with single investigator driven grants. American Journal of Preventive Medicine, 42(2), 157–163.CrossRefGoogle Scholar
  15. Hanneman, R. A., & Riddle, M. (2005). Introduction to social network methods. Riverside, CA: University of California.Google Scholar
  16. Katz, J. S., & Hicks, D. (1995). The classification of interdisciplinary journals: A new approach. In M. E. D. Koenig & A. Bookstein (Eds.), Proceedings of the fifth biennial conference of the International Society for Scientometrics and Informetrics (pp. 245–254). Medford: Learned Information.Google Scholar
  17. Klavans, R., & Boyack, K. W. (2006). Quantitative evaluation of large maps of science. Scientometrics, 68(3), 475–499.Google Scholar
  18. Lancaster, F. W., & Lee, J. L. (1985). Bibliometric techniques applied to issues management: A case study. Journal of the American Society for Information Science, 36, 389–397.CrossRefGoogle Scholar
  19. Miller, L. J., Gazan, R., & Still, S. (2014). Unsupervised document classification and visualization of unstructured text for the support of interdisciplinary collaboration. In Proceedings of the 17th ACM conference on computer supported cooperative work & social computing (CSCW 2014) (pp. 1033–1042). 15–19 February, Baltimore, MD.Google Scholar
  20. Moravcsik, M. J., & ve Murugesan, P. (1975). Some results on the function and quality of citations. Social Studies of Science, 5, 86–92.CrossRefGoogle Scholar
  21. Morillo, F., Bordons, M., & Gómez, I. (2003). Interdisciplinarity in science: A tentative typology of disciplines and research areas. Journal of the American Society for Information Science and Technology, 54(13), 1237–1249.Google Scholar
  22. NAI. (2014). International partners. Accessed 16 March 2015.
  23. NASA Astrobiology Institute Website. (2013a). Accessed February 1, 2014.
  24. NASA Astrobiology Institute Website. (2013b). Accessed April 23, 2014.
  25. National Research Council. (2004). Facilitating interdisciplinary research. Washington, DC: The National Academies Press.Google Scholar
  26. National Research Council. (2008). Assessment of the NASA Astrobiology Institute. Washington, DC: The National Academies Press.Google Scholar
  27. Oppenheim, C. (1996). Do citations count? Citation indexing and the research assessment exercise (RAE). Serials, 9(2), 155–161.CrossRefGoogle Scholar
  28. Porter, A. L., Cohen, A. S., Roessner, J. D., & Perreault, M. (2007). Measuring researcher interdisciplinarity. Scientometrics, 72(1), 117–147.CrossRefGoogle Scholar
  29. Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.CrossRefGoogle Scholar
  30. Rafols, I., Porter, A. L., & Leydesdorff, L. (2010). Science overlay maps: A new tool for research policy and library management. Journal of the American Society for Information Science and Technology, 61, 1871–1887.CrossRefGoogle Scholar
  31. Slonim, N., Friedman, N., & Tishby, N. (2002). Unsupervised document classification using sequential information maximization. In Proceedings of the 25th annual international ACM SIGIR conference on research and development in information retrieval (pp. 129–136). New York, USA.Google Scholar
  32. Small, H. (1999). Visualizing science by citation mapping. Journal of the American Society for Information Science, 50(9), 799–813.CrossRefGoogle Scholar
  33. Stokols, D., Hall, K. L., Taylor, B. K., & Moser, R. P. (2008). The science of team science: Overview of the field and introduction to the supplement. American Journal of Preventive Medicine, 35(2), 77–89.CrossRefGoogle Scholar
  34. Thomson Reuters. (2014). Journal citation reports. Accessed April 12, 2014.
  35. van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538.CrossRefGoogle Scholar
  36. van Eck, N. J., & Waltman, L. (2013). VOSviewer manual. Accessed December 22, 2014.
  37. VosViewer. (2013). Accessed December 22, 2014.
  38. Wagner, C. S., Roessner, J. D., Bobb, K., Klein, J. T., Boyack, J. W., Keyton, J., et al. (2011). Approaches to understanding and measuring interdisciplinary scientific research (IDR): A review of the literature. Journal of Informetrics, 165, 14–26.CrossRefGoogle Scholar
  39. Williams, C. J., O’Rourke, M., Eigenbrode, S. D., O’Loughlin, I., & Crowley, S. (2013). Using bibliometrics to support the facilitation of cross-disciplinary communication. Journal of the American Society for Information Science and Technology, 64(9), 1768–1779.CrossRefGoogle Scholar
  40. Wolfe-Simon, F., Blum, J. S., Kulp, T. R., Gordon, G. W., Hoeft, S. H., Pett-Ridge, J., et al. (2010). A bacterium that can grow by using arsenic instead of phosphorus. Science, 332, 1163–1166.CrossRefGoogle Scholar
  41. Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The increasing dominance of teams in production of knowledge. Science, 316, 1036–1039.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Department of Information ManagementHacettepe UniversityAnkaraTurkey
  2. 2.Center for Science and Technology PoliciesMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations