, Volume 104, Issue 1, pp 381–406 | Cite as

The generational gap of science: a dynamic cluster analysis of doctorates in an evolving scientific system



The features of science and technology (S&T) systems change over time. Simultaneously, at an individual level, the characteristics of actors in these systems also change concomitantly. In this study, the characteristics of doctorates in a changing S&T system are analyzed. This is performed by a series of cluster analyses on doctorates—with the goal of identifying shifting profiles—in strategic periods spanning three decades, which represents milestones in an evolving S&T system. A series of archetypal profiles of doctorates are identified, including changes to the relative weights of each of them, along with a pattern of alternating convergence and divergence over time on the characteristics of these doctorates.


Dynamic cluster analysis Doctorates Profile of doctorates Pathway analysis Post-doctorates 



This study was supported by the Fundação para a Ciência e Tecnologia (Portuguese Science and Technology Foundation, FCT), project grant titled “Career trajectories of doctorates: deepening the knowledge on different types of mobility” with the reference PTDC/IVC-ESCT/3788/2012.


  1. Allison, P. D., & Stewart, J. A. (1974). Productivity differences among scientists: Evidence for accumulative advantage. American Sociological Review, 39(4), 596–606.Google Scholar
  2. Almeida, J. A. S., Pais, A. A. C. C., & Formosinho, S. J. (2009). Science indicators and science patterns in Europe. Journal of Informetrics, 3(2), 134–142. doi: 10.1016/j.joi.2009.01.001.CrossRefGoogle Scholar
  3. Araújo, E. R. (2009). “With a rope around their neck”: Grant researchers living in suspended time. New Technology, Work and Employment, 24(3), 230–242.CrossRefGoogle Scholar
  4. Athans, M. (2001) Portuguese research universities: Why not the best? Lecture presented at the Faculdade de Engenharia da Faculdade do Porto.
  5. Auriol, L. (2010). Careers of doctorate holders: Employment and mobility patterns. Paris: OECD.Google Scholar
  6. Bacher, J., Wenzig, K., & Vogler, M. (2004). SPSS twostep cluster: A first evaluation. Lehrstuhl für Soziologie.Google Scholar
  7. Behrman, J. N., & Rondinelli, D. A. (1992). The cultural imperatives of globalization: Urban economic growth in the 21st century. Economic Development Quarterly, 6(2), 115–126.CrossRefGoogle Scholar
  8. Bertoli, S., Brücker, H., Facchini, G., Mayda, A. M., & Peri, G. (2009). The battle for brains: How to attract talent. Fondazione Rodolfo Debenedetti: CEPR Project.Google Scholar
  9. Bienkowska, D., & Klofsten, M. (2012). Creating entrepreneurial networks: academic entrepreneurship, mobility and collaboration during PhD education. Higher Education, 64(2), 207–222.CrossRefGoogle Scholar
  10. Chaloff, J., & Lemaitre, G. (2009). Managing highly-skilled labour migration: A comparative analysis of migration policies and challenges in OECD countries. Paris: OECD.CrossRefGoogle Scholar
  11. Chiu, T., Fang, D., Chen, J., Wang, Y., & Jeris, C. (2001). A robust and scalable clustering algorithm for mixed type attributes in large database environment. In Presented at the proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining (pp. 263–268). ACM.Google Scholar
  12. Chou, K.-L. (2008). The prevalence and clustering of four major lifestyle risk factors in Hong Kong Chinese older adults. Journal of Aging and Health, 20(7), 788–803.CrossRefGoogle Scholar
  13. Costas, R., van Leeuwen, T. N., & Bordons, M. (2010). A bibliometric classificatory approach for the study and assessment of research performance at the individual level: The effects of age on productivity and impact. Journal of the American Society for Information Science and Technology, 61(8), 1564–1581. doi: 10.1002/asi.21348
  14. Crespo, V. (1993). Uma Universidade para os Anos 2000—O Ensino Superior numa perspectiva de futuro. Mem Martins: Editorial Inquérito.Google Scholar
  15. Cruz-Castro, L., & Sanz-Menéndez, L. (2010). Mobility versus job stability: Assessing tenure and productivity outcomes. Research Policy, 39(1), 27–38. doi: 10.1016/j.respol.2009.11.008.CrossRefGoogle Scholar
  16. Delanty, G. (2001). Challenging knowledge: the university in the knowledge society Buckingham: Open University Press.Google Scholar
  17. Dietz, J. S., & Bozeman, B. (2005). Academic careers, patents, and productivity: Industry experience as scientific and technical human capital. Research Policy, 34(3), 349–367. doi: 10.1016/j.respol.2005.01.008.CrossRefGoogle Scholar
  18. Enders, J. (2002). Serving many masters: The PhD on the labour market, the everlasting need of inequality, and the premature death of Humboldt. Higher Education, 44(3–4), 493–517.CrossRefGoogle Scholar
  19. Fumasoli, T., Goastellec, G., & Kehm, B. M. (Eds.). (2015). Academic work and careers in Europe: Trends, challenges, perspectives. Dordrecht: Springer.Google Scholar
  20. Gauffriau, M., Larsen, P. O., Maye, I., Roulin-Perriard, A., & von Ins, M. (2008). Comparisons of results of publication counting using different methods. Scientometrics, 77(1), 147–176.CrossRefGoogle Scholar
  21. Gonzalez-Brambila, C., & Veloso, F. M. (2007). The determinants of research output and impact: A study of Mexican researchers. Research Policy, 36(7), 1035–1051.CrossRefGoogle Scholar
  22. Heitor, M., & Horta, H. (2011). Science and technology in Portugal: From late awakening to the challenge of knowledge integrated communities. In G. Neave & A. Amaral (Eds.), Higher education in Portugal 1974–2009: A nation, a generation (pp. 179–226). Dordrecht: Springer.Google Scholar
  23. Heitor, M., Horta, H., & Mendonça, J. (2014). Developing human capital and research capacity: science policies promoting brain gain. Technological Forecasting and Social Change, 82, 6–22.CrossRefGoogle Scholar
  24. Helson, R., & Crutchfield, R. S. (1970). Mathematicians: The creative researcher and the average PhD. Journal of Consulting and Clinical Psychology, 34(2), 250.CrossRefGoogle Scholar
  25. Hodge, V. J., & Austin, J. (2004). A survey of outlier detection methodologies. Artificial Intelligence Review, 22(2), 85–126.MATHCrossRefGoogle Scholar
  26. Horta, H. (2010). The role of the state in the internationalization of universities in catching-up countries: An analysis of the Portuguese higher education system. Higher Education Policy, 23, 63–81.CrossRefGoogle Scholar
  27. Horta, H. (2013). Deepening our understanding of academic inbreeding effects on research information exchange and scientific output: New insights for academic based research. Higher Education, 65(4), 487–510. doi: 10.1007/s10734-012-9559-7.CrossRefGoogle Scholar
  28. Horta, H. & Hasanefendic, S. (2015; forthcoming). Young Doctorates in a fast-changing higher education system: The case of Portugal. In Yudkevich, M., Altbach, P., & Rumbley, L. (Eds.) Young faculty in the twenty-first century: International perspectives. Albany: SUNY Press.Google Scholar
  29. Horta, H. & Yudkevich, M (2015) The role of academic inbreeding in developing higher education systems: Challenges and possible solutions. Working paper Google Scholar
  30. Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2000). Model‐building strategies and methods for logistic regression, 3rd ed. Applied Logistic Regression, 89–151.Google Scholar
  31. IBM SPSS Statistics for Windows. (2013). (Version 22.0). Armonk, NY: IBM.Google Scholar
  32. Jackson, D. (2013). Completing a PhD by publication: A review of Australian policy and implications for practice. Higher Education Research & Development, 32(3), 355–368. doi: 10.1080/07294360.2012.692666.CrossRefGoogle Scholar
  33. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys (CSUR), 31(3), 264–323.CrossRefGoogle Scholar
  34. Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: An introduction to cluster analysis (Vol. 344). New York: Wiley.Google Scholar
  35. Larivière, V. (2011). On the shoulders of students? The contribution of PhD students to the advancement of knowledge. Scientometrics, 90(2), 463–481. doi: 10.1007/s11192-011-0495-6.CrossRefGoogle Scholar
  36. Levin, S. G., & Stephan, P. E. (1991). Research productivity over the life cycle: Evidence for academic scientists. The American Economic Review, 81(1), 114–132.Google Scholar
  37. Leydesdorff, L., & Opthof, T. (2010). Normalization at the field level: Fractional counting of citations. Journal of Informetrics, 4(4), 644–646. doi: 10.1016/j.joi.2010.05.003.CrossRefGoogle Scholar
  38. Maali, F., Cyganiak, R., & Peristeras, V. (2011). Re-using Cool URIs: Entity Reconciliation Against LOD Hubs. LDOW, 813.Google Scholar
  39. Maroco, J. (2003). Análise estatística: Com utilização do SPSS.Google Scholar
  40. Martínez, I. N., Morán, J. M., & Peña, F. J. (2006). Two-step cluster procedure after principal component analysis identifies sperm subpopulations in Canine Ejaculates and Its Relation to Cryoresistance. Journal of Andrology, 27(4), 596–603.CrossRefGoogle Scholar
  41. Neave, G., & Amaral, A. (Eds.). (2012). Higher education in Portugal 1974-2009: A nation, a generation. Dordrecht: Springer.Google Scholar
  42. Norusis, M. J. (2012). IBM SPSS statistics 19 statistical procedures companion. Englewood Cliffs: Prentice Hall.Google Scholar
  43. Okazaki, S. (2006). What do we know about mobile internet adopters? A cluster analysis. Information & Management, 43(2), 127–141.MathSciNetCrossRefGoogle Scholar
  44. Patrício, M. T. (2010). Science policy and the internationalization of research in Portugal. Journal of Studies in International Education, 14(2), 161–182.CrossRefGoogle Scholar
  45. Pinheiro, D., Melkers, J., & Youtie, J. (2014). Learning to play the game: Student publishing as an indicator of future scholarly success. Technological Forecasting and Social Change, 81, 56–66. doi: 10.1016/j.techfore.2012.09.008.CrossRefGoogle Scholar
  46. Pion, G. M., Smith, D. D., & Tyler, N. C. (2003). Career choices of recent doctorates in special education: Their implications for addressing faculty shortages. Teacher Education and Special Education: The Journal of the Teacher Education Division of the Council for Exceptional Children, 26(3), 182–193.CrossRefGoogle Scholar
  47. Rushton, J. P., Murray, H. G., & Paunonen, S. V. (1983). Personality, research creativity, and teaching effectiveness in university professors. Scientometrics, 5(2), 93–116.CrossRefGoogle Scholar
  48. Tavares, O., Cardoso, S., Carvalho, T., Sousa, S. B., & Santiago, R. (2015). Academic inbreeding in the Portuguese academia. Higher Education,. doi: 10.1007/s10734-014-9818-x.MATHGoogle Scholar
  49. Thompson, M. L. (1978). Selection of variables in multiple regression: Part I. A review and evaluation. International Statistical Review/Revue Internationale de Statistique, 46(1), 1–19.Google Scholar
  50. Tuckman, H. P., Coyle, S., & Bae, Y. (1989). The lengthening of time to completion of the doctorate degree. Research in Higher Education, 30(5), 503–516.CrossRefGoogle Scholar
  51. Usher, R. (2002). A diversity of doctorates: Fitness for the knowledge economy? Higher Education Research & Development, 21(2), 143–153. doi: 10.1080/07294360220144060.CrossRefGoogle Scholar
  52. Zhang, T., Ramakrishnan, R., & Livny, M. (1996). BIRCH: An efficient data clustering method for very large databases. In ACM SIGMOD Record (Vol. 25, pp. 103–114). ACM.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2015

Authors and Affiliations

  1. 1.Center for Innovation, Technology and Policy Research, Instituto Superior TécnicoUniversity of LisbonLisbonPortugal
  2. 2.Faculty of EducationThe University of Hong KongPokfulamHong Kong SAR, China

Personalised recommendations