, Volume 101, Issue 3, pp 2003–2033 | Cite as

An overview of iris recognition: a bibliometric analysis of the period 2000–2012

  • Yuniol Alvarez-Betancourt
  • Miguel Garcia-Silvente


Person identification based on iris recognition is getting more and more attention among the modalities used for biometric recognition. This fact is due to the immutable and unique characteristics of the iris. Therefore it is of utmost importance for researchers interested in this discipline to know who and what is relevant in this area. This paper presents a comprehensive overview of the field of iris recognition research using a bibliometric approach. Besides, this article provides historical records, basic concepts, current progress and trends in the field. With this purpose in mind, our bibliometric study is based on 1,354 documents written in English, published between 2000 and 2012. Scopus was used to perform the information retrieval. In the course of this study, we synthesized significant bibliometric indicators on iris recognition research in order to evaluate to what extent this particular field has been explored. Thereby, we focus on foundations, temporal evolution, leading authors, most cited papers, significant conventions, leading journals, outstanding research topics and enterprises and patents. Research topics are classified into three main categories: ongoing, emerging, and decreasing according to their corresponding number of publications over the period under study. An analysis of these indicators suggests there has been major advances in iris recognition research and also reveals promising new avenues worthy of investigation in the future. This study will be useful to future investigators in the field.


Iris biometrics Iris recognition Bibliometric study 



The authors are thankful to Dr. Dominique Lepicq and Lic. Glenda Armas Noda for their important comments on the development of this paper. Also, we want to thank the anonymous reviewers for the comments and ideas provided. This work was supported by Andalusian Regional Government project P09-TIC-04813, the Spanish Government project TIN2012-38969 and by the AUIP.


  1. Bertillon, A. (1892). Tableau de l’iris humain. Bulletin de la Société d’anthropologie de Paris, 3(4, 2), 384–387.CrossRefGoogle Scholar
  2. Birgale, L., & Kokare, M. (2010). Iris recognition without iris normalization. Journal of Computer Science, 9(6), 1042–1047.CrossRefGoogle Scholar
  3. Bornmann, L., & Hans-Dieter, D. (2009). The state of h index research. EMBO Reports, 10(1), 1–6.CrossRefGoogle Scholar
  4. Bornmann, L., Moya-Anegón, F., & Leydesdorff, L. (2012). The new excellence indicator in the world report of the scimago institutions rankings 2011. Journal of Informetrics, 6, 333–335.CrossRefGoogle Scholar
  5. Bowyer, K. W., Hollingsworth, K., & Flynn, P. J. (2008). Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding, 110(2), 281–307.CrossRefGoogle Scholar
  6. Burge, M. J., & Bowyer, K. W. (2013). Handbook of iris recognition. London: Springer-Verlag.CrossRefGoogle Scholar
  7. Chen, K. H., & Liao, P. Y. (2012). A comparative study on world university rankings, a bibliometric survey. Scientometrics, 92, 89–103.CrossRefGoogle Scholar
  8. Chen, R., Lin, X., & Ding, T. (2012). Liveness detection for iris recognition using multispectral images. Pattern Recognition Letters, 12(33), 1513–1519.CrossRefGoogle Scholar
  9. Daugman, J. (1994). Biometric personal identification system based on iris analysis. US Patent No. 5, 291, 560.Google Scholar
  10. Daugman, J. (2001). Statistical richness of visual phase information: Update on recognizing persons by iris patterns. International Journal of Computer Vision, 45(1), 25.CrossRefMATHGoogle Scholar
  11. Daugman, J. (2004). How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 21–30.CrossRefGoogle Scholar
  12. Daugman, J. (2007). New methods in iris recognition. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(5), 1167–1175.CrossRefGoogle Scholar
  13. de Moya-Anegn, F., Chinchilla-Rodrguez, Z., Vargas-Quesada, B., Corera-Alvarez, E., Muoz-Fernndez, F. J., Gonzlez-Molina, A., et al. (2007). Coverage analysis of scopus: A journal metric approach. Scientometrics, 73(1), 53–78.CrossRefGoogle Scholar
  14. Dong, B., Xu, G., Luo, X., & Cai, Y. (2012). A bibliometric analysis of solar power research from 1991 to 2010. Scientometrics, 93(3), 1101–1117.CrossRefGoogle Scholar
  15. Flom, L., & Safir, A. (1987). Iris recognition system. US Patent No. 4, 641, 349.Google Scholar
  16. He, Z., Tan, T., Sun, Z., & Qiu, X. (2009). Toward accurate and fast iris segmentation for iris biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(9), 1670–1684.CrossRefGoogle Scholar
  17. Hirsch, J. (2005). An index to quantify an individuals scientific research output. In Proceedings of the National Academy of Sciences of the United States of America, vol. 102, (pp. 16,569–16,572).Google Scholar
  18. Jain, A., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 4–20.CrossRefGoogle Scholar
  19. Jin, B. (2006). h-index: An evaluation indicator proposed by scientist. Science Focus, 1, 8–9.Google Scholar
  20. Kalka, N. D., Zuo, J., Schmid, N. A., & Cukic, B. (2010). Estimating and fusing quality factors for iris biometric images. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 40(3), 509–524.CrossRefGoogle Scholar
  21. Kohonen, T. (1995). Self-organizing maps. Berlin Heidelberg: Springer.CrossRefGoogle Scholar
  22. Li, S. Z., & Jain, A. K. (Eds.). (2009). Encyclopedia of biometrics. New York, US: Springer.Google Scholar
  23. Ma, L., Tan, T., Wang, Y., & Zhang, D. (2003). Personal identification based on iris texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1519.CrossRefGoogle Scholar
  24. Matey, J., Naroditsky, O., Hanna, K., Kolczynski, R., Loiacono, D., Mangru, S., et al. (2006). Iris on the move: Acquisition of images for iris recognition in less constrained environments. In Proceedings of the IEEE, vol. 94, (pp. 1936–1946).Google Scholar
  25. Meho, L. I., & Rogers, Y. (2008). Citation counting, citation ranking, and h-index of human-computer interaction researchers: A comparison of scopus and web of science. Journal of the American Society for Information Science and Technology, 59(11), 1711–1726.CrossRefGoogle Scholar
  26. Meho, L. I., & Yang, K. (2007). Impact of data sources on citation counts and rankings of lis faculty: Web of science versus scopus and google scholar. Journal of the American Society for Information Science and Technology, 58(13), 2105–2125.CrossRefGoogle Scholar
  27. Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., & Nakajima, H. (2008). An effective approach for iris recognition using phase-based image matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(10), 1741–1756.CrossRefGoogle Scholar
  28. Monro, D., Rakshit, S., & Zhang, D. (2007). Dct-based iris recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 586–595.CrossRefGoogle Scholar
  29. Moya-Anegn, F., Guerrero-Bote, V. P., Bornmann, L., & Moed, H. F. (2013). The research guarantors of scientific papers and the output counting: A promising new approach. Scientometrics, 97, 421–434.CrossRefGoogle Scholar
  30. Natale, F., Fiore, G., & Hofherr, J. (2012). Mapping the research on aquaculture, a bibliometric analysis of aquaculture literature. Scientometrics, 90, 983–999.CrossRefGoogle Scholar
  31. Pinto, M., Escalona-Fernández, M.I., & Pulgarín, A. (2012). Information literacy in social sciences and health sciences: a bibliometric study (1974–2011). Scientometrics, 1–24. doi: 10.1007/s11192-012-0899-y.
  32. Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348.MathSciNetGoogle Scholar
  33. Proença, H., & Alexandre, L. (2007). Toward noncooperative iris recognition: A classification approach using multiple signatures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 607–612.CrossRefGoogle Scholar
  34. Rahulkar, A. D., & Holambe, R. S. (2012). Partial iris feature extraction and recognition based on a new combined directional and rotated directional wavelet filter banks. Neurocomputing, 81, 12–23.CrossRefGoogle Scholar
  35. Rathgeb, C., Uhl, A., & Wild, P. (2013). LLC: From segmentation to template security. New York: Springer.Google Scholar
  36. Roy, K., Bhattacharya, P., & Suen, C. Y. (2012). Iris segmentation using game theory. Signal, Image and Video Processing, 6, 301–315.CrossRefGoogle Scholar
  37. Sanchez-Avila, C., & Sanchez-Reillo, R. (2002). Iris-based biometric recognition using dyadic wavelet transform. IEEE Aerospace and Electronic Systems Magazine, 17, 3–6.CrossRefGoogle Scholar
  38. Sempere, C.M. (2011). A survey of the european security market. Technical Report 43, DIW Berlin, German Institute for Economic Research. Accessed 4 March 2014.
  39. Sheela, S. V., & Vijaya, P. A. (2010). Iris recognition methods—survey. International Journal of Computer Applications, 3(5), 0975–8887.CrossRefGoogle Scholar
  40. Shiau, W. L., & Dwivedi, Y. K. (2013). Citation and co-citation analysis to identify core and emerging knowledge in electronic commerce research. Scientometrics, 94, 1317–1337.CrossRefGoogle Scholar
  41. Slyder, J. B., Stein, B. R., Sams, B. S., Walker, D. M., Beale, B. J., Feldhaus, J. J., et al. (2011). Citation pattern and lifespan: A comparison of discipline, institution, and individual. Scientometrics, 89, 955–966.CrossRefGoogle Scholar
  42. Sun, Z., & Tan, T. (2009). Ordinal measures for iris recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2211–2226.CrossRefGoogle Scholar
  43. Teixeira, A.A.C., & Mota, L. (2012). A bibliometric portrait of the evolution, scientific roots and influence of the literature on university-industry links. Scientometrics, 1–25. doi: 10.1007/s11192-012-0823-5.
  44. Wang, H., Liu, M., Hong, S., & Zhuang, Y. (2013). A historical review and bibliometric analysis of gps research from 1991–2010. Scientometrics, 95(1), 35–44.Google Scholar
  45. Wildes, R. (1997). Iris recognition: An emerging biometric technology. In Proceedings of the IEEE.Google Scholar
  46. Yan, E., Ding, Y., & Zhu, Q. (2010). Mapping library and information science in china: A coauthorship network analysis. Scientometrics, 83, 115–131.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Yuniol Alvarez-Betancourt
    • 1
  • Miguel Garcia-Silvente
    • 2
  1. 1.Department of Computer SciencesUniversity of CienfuegosCienfuegosCuba
  2. 2.Department of Computer Sciences and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations