, Volume 101, Issue 1, pp 273–290 | Cite as

Research trends in gender differences in higher education and science: a co-word analysis

  • Tahereh Dehdarirad
  • Anna Villarroya
  • Maite Barrios


The aim of this study is to map and analyze the structure and evolution of the scientific literature on gender differences in higher education and science, focusing on factors related to differences between 1991 and 2012. Co-word analysis was applied to identify the main concepts addressed in this research field. Hierarchical cluster analysis was used to cluster the keywords and a strategic diagram was created to analyze trends. The data set comprised a corpus containing 652 articles and reviews published between 1991 and 2012, extracted from the Thomson Reuters Web of Science database. In order to see how the results changed over time, documents were grouped into three different periods: 1991–2001, 2002–2007, and 2008–2012. The results showed that the number of themes has increased significantly over the years and that gender differences in higher education and science have been considered by specific research disciplines, suggesting important research-field-specific variations. Overall, the study helps to identify the major research topics in this domain, as well as highlighting issues to be addressed or strengthened in further work.


Gender differences Higher education Science Co-word analysis Strategic diagram 

Mathematics Subject Classification


JEL Classification



  1. Allison, P. D., & Long, J. S. (1990). Departmental effects on scientific productivity. American Sociological Review, 55(4), 119–125. doi: 10.2307/2095801.CrossRefGoogle Scholar
  2. Bauin, S., Michelet, B., Schweighoffer, M. G., & Vermeulin, P. (1991). Using bibliometrics in strategic analysis: “Understanding chemical reactions” at the CNRS. Scientometrics, 22(1), 113–137.CrossRefGoogle Scholar
  3. Borgatti, S. P., Everett, M. G., & Freeman, L. C. (2002). Ucinet for Windows: software for social network analysis. Harvard: Analytic Technologies.Google Scholar
  4. Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual Review of Information Science and Technology, 37(1), 179–255. doi: 10.1002/aris.1440370106.CrossRefGoogle Scholar
  5. Callon, M., Courtial, J. P., & Laville, F. (1991). Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics, 22(1), 155–205. doi: 10.1007/BF02019280.CrossRefGoogle Scholar
  6. Callon, M., Courtial, J. P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191–235. doi: 10.1177/053901883022002003.CrossRefGoogle Scholar
  7. Ceci, S. J., & Williams, W. M. (2011). Understanding current causes of women’s underrepresentation in science. PNAS, 108(8), 3157–3162. doi: 10.1073/pnas.1014871108.CrossRefGoogle Scholar
  8. Cobo, M. J., López-Herrera, A. G., Herrera-Viedma, E., & Herrera, F. (2011). An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. Journal of Informetrics, 5(1), 146–166. doi: 10.1016/j.joi.2010.10.002.CrossRefGoogle Scholar
  9. Cole, J. R., & Zuckerman, H. (1984). The productivity puzzle: Persistence and change in patterns of publication of men and women scientists. In P. Maehr & M. W. Steinkmap (Eds.), Advances in Motivation and Achievement (pp. 217–258). Greenwich: JAI Press.Google Scholar
  10. Courtial, J. P., Callon, M., & Sigogneau, M. (1984). Is indexing trustworthy? Classification of articles through co-word analysis. Journal of Information Science, 9(2), 47–56. doi: 10.1177/016555158400900201.CrossRefGoogle Scholar
  11. Dewandre, N. (2002). Women in science—European strategies for promoting women in science. Science, 295(5553), 278–279. doi: 10.1126/science.1063487.CrossRefGoogle Scholar
  12. European Commission (2009). The gender challenge in research funding. Assessing the European national scenes. Brussels: European Commission, Directorate-General for Research.Google Scholar
  13. European Commission (2013). She Figures 2012. Gender in research and innovation. Brussels: Directorate-General for Research and Innovation.Google Scholar
  14. Everitt, B., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th ed.). Chichester: Wiley.CrossRefMATHGoogle Scholar
  15. Ferriman, K., Lubinski, D., & Benbow, C. P. (2009). Work preferences, life values, and personal views of top math/science graduate students and the profoundly gifted: Developmental changes and gender differences during emerging adulthood and parenthood. Journal of Personality and Social Psychology, 97(3), 517–532. doi: 10.1037/a0016030.CrossRefGoogle Scholar
  16. Fox, M. F. (2005). Gender, family characteristics, and publication productivity among scientists. Social Studies of Science, 35(1), 131–150. doi: 10.1177/0306312705046630.CrossRefGoogle Scholar
  17. Fox, M. F., Fonseca, C., & Bao, J. (2011). Work and family conflict in academic science: Patterns and predictors among women and men in research universities. Social Studies of Science, 41(5), 715–735. doi: 10.1177/0306312711417730.CrossRefGoogle Scholar
  18. Ginther, D. K., & Kahn, S. (2009). Does science promote women? Evidence from academia 1973–2001. In R. B. Freeman & D. L. Goroff (Eds.), Science and Engineering Careers in the United States: An analysis of markets and employment (pp. 163–194). Chicago: University of Chicago Press.CrossRefGoogle Scholar
  19. Gonzalez, J. A., & DeNisi, A. S. (2009). Cross-level effects of demography and diversity climate on organizational attachment and firm effectiveness. Journal of Organizational Behavior, 30(1), 21–40. doi: 10.1002/job.498.CrossRefGoogle Scholar
  20. He, Q. (1999). Knowledge Discovery through Co-Word Analysis. Library Trends, 48(1), 133–159.Google Scholar
  21. Homan, A. C., Hollenbeck, J. R., Humphrey, S. E., van Knippenberg, D., Ilgen, D. R., & Van Kleef, G. A. (2008). Facing differences with an open mind: Openness to experience, salience of intra-group differences, and performance of diverse work groups. Academy of Management Journal, 51(6), 1204–1222. doi: 10.5465/AMJ.2008.35732995.CrossRefGoogle Scholar
  22. Hunter, L. A., & Leahey, E. (2010). Parenting and research productivity: New evidence and methods. Social Studies of Science, 40(3), 433–451. doi: 10.1177/0306312709358472.CrossRefGoogle Scholar
  23. Law, J., & Whittaker, J. (1992). Mapping acidification research: A test of the co-word method. Scientometrics, 23(3), 417–461. doi: 10.1007/BF02029807.CrossRefGoogle Scholar
  24. Lawrence, P. A. (2006). Men, women, and ghosts in science. PLoSBiol, 4(1), e19. doi: 10.1371/journal.pbio.0040019.CrossRefGoogle Scholar
  25. League of European Research Universities, LERU. (2012). Women, research and universities: excellence without gender bias. Leuven, Belgium: League of European Research Universities.Google Scholar
  26. Leahey, E. (2006). Gender differences in productivity: Research specialization as a missing link. Gender & Society, 20(6), 754–780. doi: 10.1177/0891243206293030.CrossRefGoogle Scholar
  27. Ledin, A., Bornmann, L., Gannon, F., & Wallon, G. (2007). A persistent problem. Traditional gender roles hold back female scientists. EMBO Reports, 8(11), 982–987. doi: 10.1038/sj.embor.7401109.CrossRefGoogle Scholar
  28. Leta, J., & Lewison, G. (2003). The contribution of women in Brazilian science: A case study in astronomy, immunology and oceanography. Scientometrics, 57(3), 339–353. doi: 10.1023/A:1025000600840.CrossRefGoogle Scholar
  29. Mason, M. A., & Goulden, M. (2009). UC doctoral student career and life survey (University of California, Berkeley). Retrieved 10 November 2013, from
  30. Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J., & Handelsman, J. (2012). Science faculty’s subtle gender biases favor male students. Proceedings of the National Academy of Sciences of the United States of America. doi:  10.1073/pnas.1211286109.
  31. Muñoz-Leiva, F., Viedma-del-Jesús, M., Sánchez-Fernández, J., & López-Herrera, A. (2012). An application of co-word analysis and bibliometric maps for detecting the most highlighting themes in the consumer behaviour research from a longitudinal perspective. Quality & Quantity, 46(4), 1077–1095. doi: 10.1007/s11135-011-9565-3.CrossRefGoogle Scholar
  32. OECD. (2013). Education at a Glance 2013: OECD indicators. Paris: OECD Publishing.Google Scholar
  33. Prpic, K. (2002). Gender and productivity differentials in science. Scientometrics, 55(1), 27–58. doi: 10.1023/A:1016046819457.CrossRefGoogle Scholar
  34. Rosser, S. V. (2012). More gender diversity will mean better science. The Chronicle of Higher Education. From
  35. Sax, L. J., Hagedorn, L. S., Arredondo, M., & Dicrisi, F. A. (2002). Faculty research productivity: Exploring the role of gender and family-related factors. Research in Higher Education, 43(4), 423–446. doi: 10.1023/A:1015575616285.CrossRefGoogle Scholar
  36. Shen, H. (2013). Inequality quantified: Mind the gender gap. Nature, 495(7439), 22–24. doi: 10.1038/495022a.CrossRefGoogle Scholar
  37. Sonnert, G. (1996). Gender equity in science: Still an elusive goal. Issues in Science and Technology, 12(2), 53–58.Google Scholar
  38. Stack, S. (2004). Gender, children and research productivity. Research in Higher Education, 45(8), 891–920.CrossRefGoogle Scholar
  39. Sudhier, K. G., & Abhila, I. S. (2011, March 2–4). Publication productivity of social scientists in the Centre for Development Studies, Thiruvananthapuram: A bibliometric analysis. Paper presented at the 8th International CALIBER, Goa University, Goa.Google Scholar
  40. Symonds, M. R., Gemmell, N. J., Braisher, T. L., Gorringe, K. L., & Elgar, M. A. (2006). Gender differences in publication output: towards an unbiased metric of research performance. PLoS ONE, 1(1), e127. doi: 10.1371/journal.pone.0000127.CrossRefGoogle Scholar
  41. Taylor, S. W., Fender, B. F., & Burke, K. G. (2006). Unraveling the academic productivity of economists: The opportunity costs of teaching and service. Southern Economic Journal, 72(4), 846–859. doi: 10.2307/20111856.CrossRefGoogle Scholar
  42. Turner, W. A., Chartron, G., Laville, F., & Michelet, B. (1988). Packaging information for peer review: New co-word analysis techniques. In A. F. J. Van Raan (Ed.), Handbook of quantitative studies of science and technology. Dordrecht: Elsevier Science Publishers.Google Scholar
  43. UNESCO. (2012). World atlas of gender equality in education. Paris: The United Nations Educational, Scientific and Cultural Organization.Google Scholar
  44. Van den Brink, M., & Benschop, Y. (2011). Gender practices in the construction of academic excellence: Sheep with five legs. Organization, 19(4), 507–524. doi: 10.1177/1350508411414293.CrossRefGoogle Scholar
  45. Wang, Z.-Y., Li, G., Li, C.-Y., & Li, A. (2012). Research on the semantic-based co-word analysis. Scientometrics, 90(3), 855–875. doi: 10.1007/s11192-011-0563-y.CrossRefGoogle Scholar
  46. Wennerås, C., & Wold, A. (1997). Nepotism and sexism in peer-review. Nature, 387(6631), 341–343. doi: 10.1038/387341a0.CrossRefGoogle Scholar
  47. Xie, Y., & Shauman, K. A. (1998). Sex differences in research productivity: New evidence about an old puzzle. American Sociological Review, 63(6), 847–870.CrossRefGoogle Scholar
  48. Zinovyeva, N., & Bagues, M. (2011). Does gender matter for academic promotion? Evidence from a randomized natural experiment. IZA Discussion Paper No. 5537.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Tahereh Dehdarirad
    • 1
  • Anna Villarroya
    • 2
  • Maite Barrios
    • 3
  1. 1.Department of Library and Information ScienceUniversity of BarcelonaBarcelonaSpain
  2. 2.Department of Public Economy, Political Economy and Spanish EconomyUniversity of BarcelonaBarcelonaSpain
  3. 3.Department of Methodology of Behavioral SciencesUniversity of BarcelonaBarcelonaSpain

Personalised recommendations