, Volume 100, Issue 3, pp 675–686 | Cite as

Nanomaterials patenting in Brazil: some considerations for the national regulatory framework

  • Leonardo da Silva Sant’Anna
  • Maria Simone de Menezes Alencar
  • Aldo Pacheco Ferreira


Progress on the development of nanotechnology has led to a number of initiatives which serve to normalize activities in this area. Among emerging technologies, nanotechnology is one of the most prominent, and it raises high expectations in a wide range of areas affecting daily life. The risks to human health, the pathways of exposure to nanomaterials, and occupational safety are recent issues which require more attention. The study was performed on nanopatents by collecting, processing and analyzing information extracted from specialized patent databases covering the period from 1991 to 2011, totalling 1,343 patents and representing 36 countries. These patents were classified by the International Patent Classification, using the methodology proposed in a study published by Organization for Economic Co-operation and Development, which resulted in six groups of patents, distributed as follows: nanomaterials (40.3 %), medicine and biotechnology (26.6 %), measurement and production (10 %), electronics (2.7 %), energy and the environment (2.2 %), and optical electronics (1 %). Around 17 % of the patents in question did not fall into the adopted classification. The aim of this paper is to analyze the main trends of patenting related to nanotechnology, its development and environmental implications. An additional goal is to assist policy-makers to adjust the regulatory framework on nanotechnology, and to make recommendations for governments, industry, and national organizations, on creating specific subsidies for regulatory framework in Brazil.


Nanotechnology Patent analyses Nanomaterials Regulatory framework Technological foresight 



The authors express their gratitude to the Brazilian National Institute of Industrial Property for support.


  1. Allarakhia, M., & Walsh, S. (2012). Analyzing and organizing nanotechnology development: Application of the institutional analysis development framework to nanotechnology consortia. Technovation, 32(3–4), 216–226.CrossRefGoogle Scholar
  2. Antunes, A. M. S., Alencar, M. S. M., Silva, C. H., Nunes, J., & Mendes, F. M. L. (2012). Trends in nanotechnology patents applied to the health sector. Recent patents in nanotechnology, 6, 29–41.CrossRefGoogle Scholar
  3. Blackman, M. (2004). World patent information—the first 25 years. World Patent Information, 26(1), 13–24.CrossRefGoogle Scholar
  4. Blind, K., & Gauch, S. (2009). Research and standardisation in nanotechnology: Evidence from Germany. The Journal of Technology Transfer, 34(3), 320–342.CrossRefGoogle Scholar
  5. Borm, P. J. A., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., et al. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology,. doi: 10.1186/1743-8977-3-11.Google Scholar
  6. Brasil. (2005). Ministério do Planejamento. Plano Plurianual 2004–2007. Accessed Feb 2, 2012.
  7. Braun, T., Schubert, A., & Zsindely, S. (1997). Nanoscience and nanotechnology on the balance. Scientometrics, 38(2), 281–292.CrossRefGoogle Scholar
  8. Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2(4), MR17–MR71.Google Scholar
  9. Cameron, N. M. (2006). Nanotechnology and the human future: Policy, ethics, and risk. Annals of the New York Academy of Sciences, 1093, 280–300.CrossRefGoogle Scholar
  10. Chamas, C. I. (2008). Nanotechnology intellectual property in Brazil: Preliminary research note. World Patent Information, 30(2), 146–149.CrossRefGoogle Scholar
  11. Coatrieux, J. L., Bansard, J. Y., & Kerbaol, M. (2004). About the use of bibliometry for evaluation. Innovation and Technology in Biology and Medicine, 25(1), 61–66.Google Scholar
  12. Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981–1012.CrossRefGoogle Scholar
  13. Erdi, P., Makovi, K., Somogyvari, Z., Strandburg, K., Tobochnik, J., Volf, P., et al. (2012). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics. doi  10.1007/s11192-012-0796-4.
  14. Feldman, R., & Sanger, J. (2007). The text mining handbook. Cambridge, UK: Cambridge University Press.Google Scholar
  15. Fernandes, M. F. M., & Filgueiras, C. A. L. (2008). Um panorama da nanotecnologia no Brasil (e seus macro-desafios). Química Nova, 31(8), 2205–2213.CrossRefGoogle Scholar
  16. Guan, J., & Shi, Y. (2012). Transnational citation, technological diversity and small world in global nanotechnology patenting. Scientometrics,. doi: 10.1007/s11192-012-0706-9.Google Scholar
  17. He, C., & Loh, H. T. (2010). Pattern-oriented associative rule-based patent classification. Expert Systems with Applications, 37(3), 2395–2404.CrossRefGoogle Scholar
  18. Igami, M., & Okazaki, T. (2007). Capturing Nanotechnology’s current state of development via analysis of patents. STI Working Paper 2007/4 Statistical Analysis of science, Technology and Industry, DSTI/DOC (2007) 4 – OCDE. Accessed Feb 5, 2011.
  19. Jin, B., Teng, H. F., Shi, Y. J., & Qu, F. Z. (2007). Chinese patent mining based on sememe statistics and key-phrase extraction. Advanced Data Mining and Applications, 4632, 516–523.CrossRefGoogle Scholar
  20. Marchant, G. E., & Sylvester, D. J. (2006). Transnational models for regulation of nanotechnology. Journal of Law, Medicine & Ethics, 34(4), 714–725.CrossRefGoogle Scholar
  21. Mccomas, K. A., & Besley, J. C. (2011). Fairness and nanotechnology concern. Risk Analysis, 31(11), 1749–1761.CrossRefGoogle Scholar
  22. Mcintyre, R. A. (2012). Common nano-materials and their use in real world applications. Science Progress, 95(Pt1), 1–22.CrossRefGoogle Scholar
  23. Medeiros, E. S., Paterno, L. G., & Mattoso, L. H. C. (2006). Nanotecnologia. In N. Durán, L. H. C. Mattoso, & P. C. Morais (Eds.), Nanotecnologia: Introdução, Preparação, e Caracterização de Nanomateriais e Exemplos de Aplicação. Artliber: São Paulo.Google Scholar
  24. Meyer, M., & Persson, O. (1998). Nanotechnology-interdisciplinarity, patterns of collaboration and differences in application. Scientometrics, 42(2), 195–205.CrossRefGoogle Scholar
  25. Pareto, V. (1949). Quarterly Journal of Economics, LXIII, 147.Google Scholar
  26. Paschoalino, M. P., Marcone, G. P. S., & Jardim, W. F. (2010). Os nanomateriais e a questão ambiental. Química Nova, 33(2), 421–430.CrossRefGoogle Scholar
  27. Porter, A. L., & Cunningham, S. W. (2005). Tech mining: exploiting new technologies for competitive advantage. United States, Hoboken, New Jersey: Wiley.Google Scholar
  28. Porter, A. L., & Rafols, I. (2009). Is science becoming more interdisciplinary? Measuring and mapping six research fields over time. Scientometrics, 81(3), 719–745.CrossRefGoogle Scholar
  29. Rediguieri, C. F. (2009). Study on the development of nanotechnology in advanced countries and in Brazil. Brazilian Journal of Pharmaceutical Sciences, 45(2), 189–200.CrossRefGoogle Scholar
  30. Robinson, D. K. R. (2009). Co-evolutionary scenarios: An application to prospecting futures of the responsible development of nanotechnology. Technological Forecasting and Social Change, 76(9), 1222–1239.CrossRefGoogle Scholar
  31. Rossi-Bergmann, B. (2008). A nanotecnologia: Da saúde para além do determinismo tecnológico. Ciência e Cultura, 60(2), 54–57.Google Scholar
  32. Salerno, M., Landoni, P., & Verganti, R. (2008). Designing foresight studies for Nanoscience and Nanotechnology (NST) future developments. Technological Forecasting and Social Change, 75(8), 1202–1223.CrossRefGoogle Scholar
  33. Sant’Anna, L. S., Alencar, M. S. M., & Ferreira, A. P. (2013). Patenteamento em Nanotecnologia no Brasil: Desenvolvimento, Potencialidades e Reflexões para o Meio Ambiente e a Saúde Humana. Química Nova, 36, 348–353.CrossRefGoogle Scholar
  34. Santo, M. M., Coelho, G. M., Santos, D. M., & Filho, L. F. (2006). Technological Forecasting and Social Change, 73(8), 1013–1027.CrossRefGoogle Scholar
  35. Schulte, J. (2005). Nanotechnology: global strategies, industry trends and applications. Sussex: Wiley.CrossRefGoogle Scholar
  36. Schummer, J. (2004). Multidisciplinarity, interdisciplinarity, and patterns of research collaboration in nanoscience and nanotechnology. Scientometrics, 59(3), 425–465.CrossRefGoogle Scholar
  37. Shindo, H. (2005). Nanotechnology standardization in Japan. Stand News, 33(7), 36–39.Google Scholar
  38. Tseng, Y. H., Lin, C. J., & Lin, Y. I. (2007). Text mining techniques for patent analysis. Information Processing and Management, 43, 1216–1247.CrossRefGoogle Scholar
  39. Wang, L., Notten, A., & Surpatean, A. (2012). Interdisciplinarity of nano research fields: A keyword mining approach. Scientometrics,. doi: 10.1007/s11192-012-0856-9.Google Scholar
  40. Wei, L. W., Zeineldin, H., & Madnick, S. (2011). Bibliometric analysis of distributed generation. Technological Forecasting and Social Change, 78(3), 408–420.CrossRefGoogle Scholar
  41. Zanetti-Ramos, B. G., & Creczynski-Pasa, T. B. (2008). O desenvolvimento da nanotecnologia: cenário mundial e nacional de investimentos. Revista Brasileira de Farmácia, 89(2), 95–101.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Leonardo da Silva Sant’Anna
    • 1
  • Maria Simone de Menezes Alencar
    • 2
  • Aldo Pacheco Ferreira
    • 3
  1. 1.Faculdade de DireitoUniversidade do Estado do Rio de Janeiro (UERJ)Rio de JaneiroBrazil
  2. 2.Instituto de Comunicação e Informação Científica e Tecnológica em Saúde (ICICT)Fundação Oswaldo Cruz (FIOCRUZ)Rio de JaneiroBrazil
  3. 3.Centro de Estudos da Saúde do Trabalhador e Ecologia Humana (CESTEH), Escola Nacional de Saúde Pública Sérgio Arouca (ENSP)Fundação Oswaldo Cruz (FIOCRUZ)Rio de JaneiroBrazil

Personalised recommendations