, Volume 98, Issue 2, pp 1473–1490 | Cite as

A bibliometric analysis of research on proteomics in Science Citation Index Expanded

  • Jiang Tan
  • Hui-Zhen Fu
  • Yuh-Shan Ho


A bibliometric analysis was conducted to evaluate the global scientific output of proteomics research in the Science Citation Index Expanded from 1995 to 2010. The document types, languages, journals, categories, countries, and institutions were analyzed to obtain publication patterns. Research focuses and trends were revealed by a word cluster method related to author keywords, title, abstract, and KeyWords Plus. Bradford’s Law and the correlation between keywords and institutions were identified to look deeper into the nature works. Proteomics and Journal of Proteome Research published the most articles in proteomics research. The researchers focused on the categories of biochemical research methods, and biochemistry and molecular biology. The USA and Harvard University were the most productive country and institution, respectively, while China was the fastest-growing country due to the support by Chinese government. The distribution of author keywords provided the important clues of hot issues. Results showed that mass spectrometry and two-dimensional gel electrophoresis had been the most frequently used research methods in the past 16 years; and cancer proteomics had a strong potential in the near future. Furthermore, biologists contributed significantly to proteomics research, and were more likely to co-operate with medical scientists.


Proteome Proteomics Bibliometric Web of Science Research trends 


  1. Adam, B. L., Qu, Y., Davis, J. W., Ward, M. D., Clements, M. A., Cazares, L. H., et al. (2002). Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Research, 62(13), 3609–3614.Google Scholar
  2. Aebersold, R., & Mann, M. (2003). Mass spectrometry-based proteomics. Nature, 422(6928), 198–207.Google Scholar
  3. Alfaraz, P. H., & Calvino, A. M. (2004). Bibliometric study on food science and technology: Scientific production in Iberian–American countries (1991–2000). Scientometrics, 1, 89–102.Google Scholar
  4. Allen, T. M., & Cullis, P. R. (2004). Drug delivery systems: Entering the mainstream. Science, 303(5665), 1818–1822.Google Scholar
  5. Alm, R. A., Ling, L. S. L., Moir, D. T., King, B. L., Brown, E. D., Doig, P. C., et al. (1999). Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 397(6715), 176–180.Google Scholar
  6. Anderson, N. (1998). Proteome and proteomics: New technologies, new concepts, and new words. Electrophoresis, 19(11), 1853–1861.Google Scholar
  7. Atkinson, A. J., Colburn, W. A., DeGruttola, V. G., DeMets, D. L., Downing, G. J., Hoth, D. F., et al. (2001). Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clinical Pharmacology and Therapeutics, 69(3), 89–95.Google Scholar
  8. Bairoch, A., & Apweiler, R. (2000). The SWISS–PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Research, 28(1), 45–48.Google Scholar
  9. Bajwa, R. S., Yaldram, K., & Rafique, S. (2013). A scientometric assessment of research output in nanoscience and nanotechnology: Pakistan perspective. Scientometrics, 94(1), 333–342.Google Scholar
  10. Bayer, A. E., & Folger, J. (1966). Some correlates of a citation measure of productivity in science. Sociology of Education, 39(4), 381–390.Google Scholar
  11. Blackstock, W. P., & Weir, M. P. (1999). Proteomics: Quantitative and physical mapping of cellular proteins. Trends in Biotechnology, 17(3), 121–127.Google Scholar
  12. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., et al. (2003). The SWISS–PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research, 31(1), 365–370.Google Scholar
  13. Bradford, S. C. (1934). Sources of information on specific subjects. British Journal of Engineering, 137(3550), 85–86.Google Scholar
  14. Braun, T., Schubert, A. P., & Kostoff, R. N. (2000). Growth and trends of fullerene research as reflected in its journal literature. Chemical Reviews, 100(1), 23–38.Google Scholar
  15. Brennan, J. P., Wait, R., Begum, S., Bell, J. R., Dunn, M. J., & Eaton, P. (2004). Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. Journal of Biological Chemistry, 279(40), 41352–41360.Google Scholar
  16. Butterfield, D. A. (2004). Proteomics: A new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Research, 1000(1), 1–7.Google Scholar
  17. Celis, J. E., Ostergaard, M., Rasmussen, H. H., Gromov, P., Gromova, I., Varmark, H., et al. (1999). A comprehensive protein resource for the study of bladder cancer: Electrophoresis, 20(2), 300–309.
  18. Celis, J. E., Wolf, H., & Østergaard, M. (2000). Bladder squamous cell carcinoma biomarkers derived from proteomics. Electrophoresis, 21(11), 2115–2121.Google Scholar
  19. Cellulaire, B. (2002). Two-dimensional gel electrophoresis in proteomics: Old, old fashioned, but it still climbs up the mountains. Proteomics, 2, 3–10.Google Scholar
  20. Chen, S., & Harmon, A. C. (2006). Advances in plant proteomics. Proteomics, 6(20), 5504–5516.Google Scholar
  21. Chiu, W. T., & Ho, Y. S. (2005). Bibliometric analysis of homeopathy research during the period of 1991 to 2003. Scientometrics, 63(1), 3–23.Google Scholar
  22. Chiu, W. T., & Ho, Y. S. (2007). Bibliometric analysis of tsunami research. Scientometrics, 73(1), 3–17.Google Scholar
  23. Chuang, K. Y., Huang, Y. L., & Ho, Y. S. (2007). A bibliometric and citation analysis of stroke-related research in Taiwan. Scientometrics, 72(2), 201–212.Google Scholar
  24. Chuang, K. Y., Wang, M. H., & Ho, Y. S. (2011). High-impact papers presented in the subject category of water resources in the essential science indicators database of the Institute for Scientific Information. Scientometrics, 87(3), 551–562.Google Scholar
  25. Clauser, K. R., Baker, P., & Burlingame, A. L. (1999). Role of accurate mass measurement (±10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Analytical Chemistry, 71(14), 2871–2882.Google Scholar
  26. Coats, A. J. S. (2009). Ethical authorship and publishing. International Journal of Cardiology, 131(2), 149–150.Google Scholar
  27. Craig, R., & Beavis, R. C. (2004). TANDEM: Matching proteins with tandem mass spectra. Bioinformatics, 20(9), 1466–1467.Google Scholar
  28. Domon, B., & Aebersold, R. (2006). Mass spectrometry and protein analysis. Science, 312(5771), 212–217.Google Scholar
  29. Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods, 4(3), 207–214.Google Scholar
  30. Faley, S. L., Copland, M., Wlodkowic, D., Kolch, W., Seale, K. T., Wikswo, J. P., et al. (2009). Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab on a Chip, 9(18), 2659–2664.Google Scholar
  31. Fournier, F., Guo, R., Gardner, E. M., Donaldson, P. M., Loeffeld, C., Gould, I. R., et al. (2009). Biological and biomedical applications of two-dimensional vibrational spectroscopy: proteomics, imaging, and structural analysis. Accounts of Chemical Research, 42(9), 1322–1331.Google Scholar
  32. Fu, H. Z., Ho, Y. S., Sui, Y. M., & Li, Z. S. (2010). A bibliometric analysis of solid waste research during the period 1993–2008. Waste Management, 30(12), 2410–2417.Google Scholar
  33. Fu, H. Z., Wang, M. H., & Ho, Y. S. (2013). Mapping of drinking water research: A bibliometric analysis of research output during 1992–2011. Science of the Total Environment, 443, 757–765.Google Scholar
  34. Garfield, E. (1990). KeyWords Plus™—ISIS breakthrough retrieval method. 1. Expanding your searching power on current-contents on diskette. Current Contents, 32, 5–9.Google Scholar
  35. Garrels, J., McLaughlin, C., Warner, J., Futcher, B., Latter, G., Kobayashi, R., et al. (1997). Proteome studies of Saccharomyces cerevisiae: Identification and characterization of abundant proteins. Electrophoresis, 18(8), 1347–1360.Google Scholar
  36. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788.Google Scholar
  37. Gavin, A. C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., et al. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415(6868), 141–147.Google Scholar
  38. Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W., & Gygi, S. P. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proceedings of the National Academy of Sciences, 100(12), 6940–6945.Google Scholar
  39. Görg, A., Weiss, W., & Dunn, M. J. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics, 4(12), 3665–3685.Google Scholar
  40. Gygi, S. P., Corthals, G. L., Zhang, Y., Rochon, Y., & Aebersold, R. (2000). Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proceedings of the National Academy of Sciences, 97(17), 9390–9395.Google Scholar
  41. Gygil, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., & Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology, 17(10), 994–999.Google Scholar
  42. Han, J. S., & Ho, Y. S. (2011). Global trends and performances of acupuncture research. Neuroscience and Biobehavioral Reviews, 35(3), 680–687.Google Scholar
  43. Hanash, S. (2003). Disease proteomics. Nature, 422(6928), 226–232.Google Scholar
  44. Harris, L., Fritsche, H., Mennel, R., Norton, L., Ravdin, P., Taube, S., et al. (2007). American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. Journal of Clinical Oncology, 25(33), 5287–5312.Google Scholar
  45. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16569–16572.Google Scholar
  46. Ho, Y. S. (2008). Bibliometric analysis of biosorption technology in water treatment research from 1991 to 2004. International Journal of Environment and Pollution, 34(1–4), 1–13.Google Scholar
  47. Ho, Y. S., Satoh, H., & Lin, S. Y. (2010). Japanese lung cancer research trends and performances in Science Citation Index. Internal Medicine, 49(20), 2219–2228.Google Scholar
  48. Hood, L., Heath, J. R., Phelps, M. E., & Lin, B. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science, 306(5696), 640–643.Google Scholar
  49. Hu, J., Ma, Y. W., Zhang, L., Gan, F. X., & Ho, Y. S. (2010). A historical review and bibliometric analysis of research on lead in drinking water field from 1991 to 2007. Science of the Total Environment, 408(7), 1738–1744.Google Scholar
  50. Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., et al. (2001). Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292(5518), 929–934.Google Scholar
  51. Imai, B. S., & Mische, S. M. (1999). Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: A method for the removal of silver ions to enhance sensitivity. Electrophoresis, 20, 601–605.Google Scholar
  52. James, P. (1997). Protein identification in the post-genome era: The rapid rise of proteomics. Quarterly Reviews of Biophysics, 30(4), 279–331.Google Scholar
  53. Jorrín, J. V., Maldonado, A. M., & Castillejo, M. A. (2007). Plant proteome analysis: A 2006 update. Proteomics, 7(16), 2947–2962.Google Scholar
  54. Jung, Y. H., Rakwal, R., Agrawal, G. K., Shibato, J., Kim, J. A., Lee, M. O., et al. (2006). Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (BLM). Journal of Proteome Research, 5(10), 2586–2598.Google Scholar
  55. Kamo, M., Kawakami, T., Miyatake, N., & Tsugita, A. (1995). Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis, 16(3), 423–430.Google Scholar
  56. Keller, A., Nesvizhskii, A. I., Kolker, E., & Aebersold, R. (2002). Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Analytical Chemistry, 74(20), 5383–5392.Google Scholar
  57. Kinter, M., & Sherman, N. E. (2000). Protein sequencing and identification using tandem mass spectrometry (Vol. 2). New York: Wiley.Google Scholar
  58. Klose, J. (1975). Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. Human Genetics, 26(3), 231–243.Google Scholar
  59. Kolch, W., & Pitt, A. (2010). Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nature Reviews Cancer, 10(9), 618–629.Google Scholar
  60. Lee, D. G., Ahsan, N., Lee, S. H., Kang, K. Y., Bahk, J. D., Lee, I. J., et al. (2007). A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics, 7(18), 3369–3383.Google Scholar
  61. Lewis, T. S., Hunt, J. B., Aveline, L. D., Jonscher, K. R., Louie, D. F., Yeh, J. M., et al. (2000). Identification of novel MAP kinase pathway signaling targets by functional proteomics and mass spectrometry. Molecular Cell, 6(6), 1343–1354.Google Scholar
  62. Li, L. L., Ding, G. H., Feng, N., Wang, M. H., & Ho, Y. S. (2009a). Global stem cell research trend: Bibliometric analysis as a tool for mapping of trends from 1991 to 2006. Scientometrics, 80(1), 39–58.Google Scholar
  63. Li, J. F., Wang, M. H., & Ho, Y. S. (2011). Trends in research on global climate change: A Science Citation Index Expanded-based analysis. Global and Planetary Change, 77(1–2), 13–20.Google Scholar
  64. Li, J., Zhang, Z., Rosenzweig, J., Wang, Y. Y., & Chan, D. W. (2002). Proteomics and bioinformatics approaches for identification of serum biomarkers to detect breast cancer. Clinical Chemistry, 48(8), 1296–1304.Google Scholar
  65. Li, J. F., Zhang, Y. H., Wang, X. S., & Ho, Y. S. (2009b). Bibliometric analysis of atmospheric simulation trends in meteorology and atmospheric science journals. Croatica Chemica Acta, 82(3), 695–705.Google Scholar
  66. Link, A., Hays, L., Carmack, E., & Yates, J., I. I. I. (1997). Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis, 18(8), 1314–1334.Google Scholar
  67. Macgillivray, A. J., & Wood, D. R. (1974). The heterogeneity of mouse-chromatin nonhistone proteins as evidenced by two-dimensional polyacrylamide-gel electrophoresis and ion-exchange chromatography. European Journal of Biochemistry, 41(1), 181–190.Google Scholar
  68. Macherel, D., Benamar, A., Avelange-Macherel, M. H., & Tolleter, D. (2007). Function and stress tolerance of seed mitochondria. Physiologia Plantarum, 129(1), 233–241.Google Scholar
  69. Mann, M., Hendrickson, R. C., & Pandey, A. (2001). Analysis of proteins and proteomes by mass spectrometry. Annual Review of Biochemistry, 70(1), 437–473.Google Scholar
  70. Mao, N., Wang, M. H., & Ho, Y. S. (2010). A bibliometric study of the trend in articles related to risk assessment published in Science Citation Index. Human and Ecological Risk Assessment, 16(4), 801–824.Google Scholar
  71. Moed, H. F., Burger, W. J. M., Frankfort, J. G., & Vanraan, A. F. J. (1985). The use of bibliometric data for the measurement of university research performance. Research Policy, 14(3), 131–149.Google Scholar
  72. Muellner, S., Neumann, T., & Lottspeich, F. (1998). Proteomics—A new way for drug target discovery. Arzneimittel-Forschung, 48(1), 93–95.Google Scholar
  73. Nelson, T., Tausta, S. L., Gandotra, N., & Liu, T. (2006). Laser microdissection of plant tissue: What you see is what you get. Annual Review of Plant Biology, 57, 181–201.Google Scholar
  74. O’Farrell, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry, 250(10), 4007–4021.Google Scholar
  75. Ong, S. E., & Mann, M. (2005). Mass spectrometry-based proteomics turns quantitative. Nature Chemical Biology, 1(5), 252–262.Google Scholar
  76. Pandey, A., & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405(6788), 837–846.Google Scholar
  77. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., & Gygi, S. P. (2003). Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC–MS/MS) for large-scale protein analysis: The yeast proteome. Journal of Proteome Research, 2(1), 43–50.Google Scholar
  78. Persidis, A. (1998). Proteomics—An ambitious drug development platform attempts to link gene sequence to expressed phenotype under various physiological states. Nature Biotechnology, 16(4), 393–394.Google Scholar
  79. Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 348–349.MathSciNetGoogle Scholar
  80. Proctor, P. H. (1989). Free radicals and human disease. CRC Handbook of Free Radicals and Antioxidants, 1, 209–221.Google Scholar
  81. Proctor, P. H., & Reynolds, E. (1984). Free radicals and disease in man. Physiological Chemistry and Physics and Medical NMR, 16(3), 175–195.Google Scholar
  82. Qi, S. Y., Moir, A., & O’Connor, C. D. (1996). Proteome of Salmonella typhimurium SL1344: Identification of novel abundant cell envelope proteins and assignment to a two-dimensional reference map. Journal of Bacteriology, 178(16), 5032–5038.Google Scholar
  83. Rabilloud, T., Heller, M., Gasnier, F., Luche, S., Rey, C., Aebersold, R., et al. (2002). Proteomics analysis of cellular response to oxidative stress. Journal of Biological Chemistry, 277(22), 19396–19401.Google Scholar
  84. Rifai, N., Gillette, M. A., & Carr, S. A. (2006). Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nature Biotechnology, 24(8), 971–983.Google Scholar
  85. Rual, J. F., Venkatesan, K., Hao, T., Hirozane-Kishikawa, T., Dricot, A., Li, N., et al. (2005). Towards a proteome-scale map of the human protein–protein interaction network. Nature, 437(7062), 1173–1178.Google Scholar
  86. Schubert, A., Glänzel, W., & Braun, T. (1989). Scientometric datafiles: A comprehensive set of indicators on 2649 journals and 96 countries in all major science fields and subfields 1981–1985. Scientometrics, 16, 3–478.Google Scholar
  87. Schulz, K. R., Danna, E. A., Krutzik, P. O., & Nolan, G. P. (2007). Single-cell phospho-protein analysis by flow cytometry. Current Protocols in Immunology, 8(17), 11–18.Google Scholar
  88. Seibert, V., Ebert, M. P. A., & Buschmann, T. (2005). Advances in clinical cancer proteomics: SELDI-ToF-mass spectrometry and biomarker discovery. Briefings in Functional Genomics & Proteomics, 4(1), 16–26.Google Scholar
  89. Shevchenko, A., Jensen, O. N., Podtelejnikov, A. V., Sagliocco, F., Wilm, M., Vorm, O., et al. (1996). Linking genome and proteome by mass spectrometry: Large-scale identification of yeast proteins from two dimensional gels. Proceedings of the National Academy of Sciences, 93(25), 14440–14445.Google Scholar
  90. Shevchenko, A., Sunyaev, S., Loboda, A., Bork, P., & Ens, W. (2001). Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Analytical Chemistry, 73(9), 1917–1926.Google Scholar
  91. Simpson, R. J., & Dorow, D. S. (2001). Cancer proteomics: From signaling networks to tumor markers. Trends in Biotechnology, 19, 40–48.Google Scholar
  92. Sun, J. S., Wang, M. H., & Ho, Y. S. (2012). A historical review and bibliometric analysis of research on estuary pollution. Marine Pollution Bulletin, 64(1), 13–21.Google Scholar
  93. Tanaka, H., & Ho, Y. S. (2011). Global trends and performances of desalination research. Desalination and Water Treatment, 25(1–3), 1–12.Google Scholar
  94. Tyers, M., & Mann, M. (2003). From genomics to proteomics. Nature, 422, 193–197.Google Scholar
  95. Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., et al. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell, 102(1), 43–53.Google Scholar
  96. Wang, M. H., & Ho, Y. S. (2011). Research articles and publication trends in environmental sciences from 1998 to 2009. Archives of Environmental Science, 5, 1–10.MATHMathSciNetGoogle Scholar
  97. Washburn, M. P., Wolters, D., & Yates, J. R., I. I. I. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology, 19(3), 242–247.Google Scholar
  98. Wen, D., Yu, T. C., & Ho, Y. S. (2009). Bibliometric tools applied to analytical articles: The example of gene transfer-related research. OCLC Systems & Services, 25(3), 186–199.Google Scholar
  99. Wilkins, M. R., Pasquali, C., Appel, R. D., Ou, K., Golaz, O., Sanchez, J. C., et al. (1996). From proteins to proteomes: Large scale protein identification by two-dimensional electrophoresis and arnino acid analysis. Nature Biotechnology, 14(1), 61–65.Google Scholar
  100. Wolf-Yadlin, A., Sevecka, M., & MacBeath, G. (2009). Dissecting protein function and signaling using protein microarrays. Current Opinion in Chemical Biology, 13(4), 398–405.Google Scholar
  101. Wolters, D. A., Washburn, M. P., & Yates, J. R., I. I. I. (2001). An automated multidimensional protein identification technology for shotgun proteomics. Analytical Chemistry, 73(23), 5683–5690.Google Scholar
  102. Xie, S. D., Zhang, J., & Ho, Y. S. (2008). Assessment of world aerosol research trends by bibliometric analysis. Scientometrics, 77(1), 113–130.Google Scholar
  103. Yan, J., Tonella, L., Sanchez, J., Wilkins, M., Packer, N., Gooley, A., et al. (1997). The Dictyostelium discoideum proteome—The SWISS-2DPAGE database of the multicellular aggregate (slug). Electrophoresis, 18(3–4), 491–497.Google Scholar
  104. Yates, J. R. (1998). Mass spectrometry and the age of the proteome. Journal of Mass Spectrometry, 33(1), 1–19.Google Scholar
  105. Yu, J. J., Wang, M. H., Xu, M., & Ho, Y. S. (2012). A bibliometric analysis of research papers published on photosynthesis: 1992–2009. Photosynthetica, 51(1), 5–14.Google Scholar
  106. Zhang, Z., Bast, R. C., Yu, Y., Li, J., Sokoll, L. J., Rai, A. J., et al. (2004). Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Research, 64(16), 5882–5890.Google Scholar
  107. Zhang, Z., & Chan, D. W. (2005). Cancer proteomics: In pursuit of “true” biomarker discovery. Cancer Epidemiology, Biomarkers and Prevention, 14(10), 2283–2286.Google Scholar
  108. Zhang, J. G., Farley, A., Nicholson, S. E., Willson, T. A., Zugaro, L. M., Simpson, R. J., et al. (1999). The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proceedings of the National Academy of Sciences, 96(5), 2071–2076.Google Scholar
  109. Zhang, G. F., Xie, S. D., & Ho, Y. S. (2010). A bibliometric analysis of world volatile organic compounds research trends. Scientometrics, 83(2), 477–492.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Longping Branch, Graduate SchoolCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Trend Research CentreAsia UniversityWufeng, Taichung CountyTaiwan
  3. 3.Department of Environmental SciencesPeking UniversityBeijingPeople’s Republic of China

Personalised recommendations