Skip to main content
Log in

The effect of database dirty data on h-index calculation

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

As all databases, the bibliometric ones (e.g. Scopus, Web of Knowledge and Google Scholar) are not exempt from errors, such as missing or wrong records, which may obviously affect publication/citation statistics and—more in general—the resulting bibliometric indicators. This paper tries to answer to the question “What is the effect of database uncertainty on the evaluation of the h-index?”, breaking the paradigm of deterministic database analysis and treating responses to database queries as random variables. Precisely an informetric model of the h-index is used to quantify the variability of this indicator with respect to the variability stemming from errors in database records. Some preliminary results are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alonso, S., Cabrerizo, F. J., Herrera-Viedma, E., & Herrera, F. (2009). h-Index: A review focused in its variants, computation and standardization for different scientific fields. Journal of Informetrics, 3(4), 273–289.

    Article  Google Scholar 

  • Bar-Ilan, J., Levene, M., & Lin, A. (2007). Some measures for comparing citation databases. Journal of Informetrics, 1(1), 26–34.

    Article  Google Scholar 

  • Bornmann, L., & Daniel, H. D. (2005). Does the h-index for ranking of scientists really work? Scientometrics, 65(3), 391–392.

    Article  Google Scholar 

  • Braun, T., Glänzel, W., & Schubert, A. (2006). A Hirsch-type index for journals. Scientometrics, 69(1), 169–173.

    Article  Google Scholar 

  • Casella, G., & Berger, R. L. (2001). Statistical inference (2nd ed., pp. 240–245). North Scituate: Duxbury Press.

    Google Scholar 

  • Courtault, J. M., & Hayek, N. (2008). On the Robustness of the h-index: a mathematical approach. Economics Bulletin, 3(78), 1–9.

    Google Scholar 

  • Egghe, L. (1990). The duality of informetric systems with applications to the empirical laws. Journal of Information Science, 16(1), 17–27.

    Article  Google Scholar 

  • Egghe, L. (2005a). Power laws in the information production process: Lotkaian informetrics. London: Academic Press.

    Google Scholar 

  • Egghe, L. (2005b). Relations between the continuous and the discrete Lotka power function. Journal of the American Society for Information Science and Technology, 56(7), 664–668.

    Article  Google Scholar 

  • Egghe, L. (2006). An improvement of the h-index: The g-index. ISSI Newsletter, 2(1), 8–9.

    MathSciNet  Google Scholar 

  • Egghe, L. (2009). Lotkaian informetrics and applications to social networks. Bulletin of the Belgian Mathematical Society-Simon Stevin, 16(4), 689–703.

    MathSciNet  MATH  Google Scholar 

  • Egghe, L., & Rousseau, R. (2006). An informetric model for the Hirsch-index. Scientometrics, 69(1), 121–129.

    Article  Google Scholar 

  • Franceschini, F., Galetto, M., Maisano, D., & Mastrogiacomo, L. (2012a). The success-index: An alternative approach to the h-index for evaluating an individual’s research output. Scientometrics, 92(3), 621–641.

    Article  Google Scholar 

  • Franceschini, F. M., Galetto, D. M., & Mastrogiacomo, L. (2012a). An informetric model for the success-index. Forthcoming on Journal of Informetrics.

  • Franceschini, F., & Maisano, D. (2010a). Analysis of the Hirsch index’s operational properties. European Journal of Operational Research, 203(2), 494–504.

    Article  MATH  Google Scholar 

  • Franceschini, F., & Maisano, D. (2010b). The Hirsch spectrum: A novel tool for analyzing scientific journals. Journal of Informetrics, 4(1), 64–73.

    Article  Google Scholar 

  • Glänzel, W. (2006a). On the h-index-a mathematical approach to a new measure of publication activity and citation impact. Scientometrics, 67(2), 315–321.

    Article  Google Scholar 

  • Glänzel, W. (2006b). On the opportunities and limitations of the h-index. Science focus, 1(1), 10–11

    Google Scholar 

  • Henzinger, M., Suñol, J., & Weber, I. (2010). The stability of the h-index. Scientometrics, 84(2), 465–479.

    Article  Google Scholar 

  • Hernández, M. A., & Stolfo, S. J. (1998). Real-world data is dirty: Data cleansing and the merge/purge problem. Data Mining and Knowledge Discovery, 2(1), 9–37.

    Article  Google Scholar 

  • Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National academy of Sciences of the United States of America, 102(46), 16569–16572.

    Article  Google Scholar 

  • Jacso, P. (2006). Deflated, inflated and phantom citation counts. Online Information Review, 30(3), 297–309.

    Article  Google Scholar 

  • Jacsó, P. (2008). The pros and cons of computing the h-index using Web of Science. Online Information Review, 32(5), 673–688.

    Article  Google Scholar 

  • Jacsó, P. (2011a). Google Scholar duped and deduped–the aura of “robometrics”. Online Information Review, 35(1), 154–160.

    Article  Google Scholar 

  • Jacsó, P. (2011b). The h-index, h-core citation rate and the bibliometric profile of the Scopus database. Online Information Review, 35(3), 492–501.

    Article  Google Scholar 

  • JCGM100:2008 (2008). Evaluation of measurement data—Guide to the expression of uncertainty in measurement. International Organization for Standardization, Geneve, Switzerland

  • Kim, W., Choi, B. J., Hong, E. K., Kim, S. K., & Lee, D. (2003). A taxonomy of dirty data. Data Mining and Knowledge Discovery, 7(1), 81–99.

    Article  MathSciNet  Google Scholar 

  • Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of Washington Academy Sciences, 16, 317–323.

    Google Scholar 

  • Montgomery, D. C. (2009). Statistical quality control: A modern introduction. Hoboken: Wiley.

    MATH  Google Scholar 

  • Scopus-Elsevier. (2012). Scopus Content Coverage. Retrieved September 2012, from http://www.scopus.com.

  • Thomson-Reuters (Ed.) (2012) 2011 Journal Citation Reports® Science Edition.

  • Times Higher Education. (2012). The World University Rankings. Retrieved September 2012, from http://www.timeshighereducation.co.uk/world-university-rankings/.

  • Van Raan, A. F. J. (2006). Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics, 67(3), 491–502.

    Google Scholar 

  • Vanclay, J. K. (2007). On the robustness of the h-index. Journal of the American Society for Information Science and Technology, 58(10), 1547–1550.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiorenzo Franceschini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franceschini, F., Maisano, D. & Mastrogiacomo, L. The effect of database dirty data on h-index calculation. Scientometrics 95, 1179–1188 (2013). https://doi.org/10.1007/s11192-012-0871-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-012-0871-x

Keywords

Navigation