Advertisement

Scientometrics

, Volume 95, Issue 1, pp 25–34 | Cite as

Theoretical justification of the central area indices and the central interval indices

  • L. Egghe
Article

Abstract

The central area indices and the central interval indices, as introduced in Dorta-González and Dorta-González (Scientometrics 88(3):729–745, 2011), are studied from a theoretical point of view. They are defined in order to yield higher impact values of “selective” authors (i.e., authors with concentrated number of citations over their publications). We show that this property is not valid for every citation distribution. However, if Zipf’s law is adopted for the citation distribution, we can show that the central area indices and the central interval indices have indeed higher values for more selective authors.

Keywords

Central area index Central interval index h-index Hirsch index 

References

  1. Dorta-González, P., & Dorta-González, M.-I. (2011). Central indexes to the citation distribution: a complement to the h-index. Scientometrics, 88(3), 729–745.CrossRefGoogle Scholar
  2. Egghe, L. (2005). Power laws in the information production process: Lotkaian informetrics. Oxford (UK): Elsevier.Google Scholar
  3. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.MathSciNetCrossRefGoogle Scholar
  4. Egghe, L., (2010). The Hirsch-index and related impact measures. In: B. Cronin (Ed.), Annual review of information science and technology (vol. 44, pp. 65–114). Medford: Information Today.Google Scholar
  5. Egghe, L. (2011). A disadvantage of h-type indices for comparing the citation impact of two researchers. Research Evaluation, 20(4), 341–346.CrossRefGoogle Scholar
  6. Egghe, L., & Rousseau, R. (2006). An informetric model for the Hirsch-index. Scientometrics, 69(1), 121–129.CrossRefGoogle Scholar
  7. Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National academy of Sciences of the United States of America, 102(46), 16569–16572.CrossRefGoogle Scholar
  8. Jin, B. H., Liang, L. M., Rousseau, R., & Egghe, L. (2007). The R- and AR-indices: complementing the h-index. Chinese Science Bulletin, 52(6), 855–863.CrossRefGoogle Scholar
  9. Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317–324.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Universiteit Hasselt (UHasselt)DiepenbeekBelgium
  2. 2.Universiteit Antwerpen (UA)AntwerpenBelgium

Personalised recommendations