, Volume 86, Issue 3, pp 671–686 | Cite as

f-Value: measuring an article’s scientific impact

  • Eleni Fragkiadaki
  • Georgios Evangelidis
  • Nikolaos Samaras
  • Dimitris A. Dervos


The f-value is a new indicator that measures the importance of a research article by taking into account all citations received, directly and indirectly, up to depth n. The f-value considers all information present in a Citation Graph in order to produce a ranking of the articles. Apart from the mathematical equation that calculates the f-value, we also present the corresponding algorithm with its implementation, plus an experimental comparison of f-value with two known indicators of an article’s scientific importance, namely, the number of citations and the Page Rank for citation analysis. Finally, we discuss the similarities and differences among the indicators.


Citation analysis Citation graph f-Value Page Rank 


  1. Anderson, T.R., Hankin, R. K. S., & Killworth P. D. (2008) Beyond the durfee square: Enhancing the h-index to score total publication output. Scientometrics 76(3), 577–588. doi: 10.1007/s11192-007-2071-2.CrossRefGoogle Scholar
  2. Austin, D. (2006). How Google finds your needle in the web’s haystack.
  3. Boldi, P., Santini, M., & Vigna, S. (2009). Pagerank: Functional dependencies. ACM Transactions on Information Systems 27(4), 1–23. doi: 10.1145/1629096.1629097.CrossRefGoogle Scholar
  4. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems, 30, 107–117.Google Scholar
  5. Dervos, D., & Kalkanis, T. (2005). cc-IFF: A cascading citations impact factor framework for the automatic rankings of research publications. In 3rd IEEE international workshop on intelligent data acquisition and advanced computer systems: technology and applications (IDAACS 2005), Sofia, Bulgaria.Google Scholar
  6. Dervos, D., & Klimis, L. (2008). Exploiting cascading citations for retrieval. In Proceeding of the ASSIST 2008 annual meeting.Google Scholar
  7. Dervos, D., Samaras, N., Evangelidis, G., & Folias, T. (2006). A new framework for the citation indexing paradigm. In Proceedings of the ASSIST 2006 annual meeting, Austin, Texas, USA.Google Scholar
  8. Egghe, L. (2006). Theory and practise of the g-index. Scientometrics, 69(1), 131–152.CrossRefMathSciNetGoogle Scholar
  9. Fragkiadaki, E., Evangelidis, G., Samaras, N., & Dervos, D. (2009). Cascading citations indexing framework algorithm implementation and testing. Informatics, Panhellenic conference on Informatics, 70–74. doi: 10.1109/PCI.2009.30.
  10. Garfield, E. (1955). Citation indexes for science. A new dimension in documentation through association of ideas. Science 122, 1123–1127.CrossRefGoogle Scholar
  11. Garfield, E. (1999). Journal impact factor: A brief review. CMAJ 161(8), 979–980.Google Scholar
  12. Garfield, E. (2005). The agony and the ecstasy—the history and meaning of the journal impact factor. In International Congress on Peer Review And Biomedical Publication.Google Scholar
  13. Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). Citeseer: An automatic citation indexing system (pp. 89–98). New York: ACM Press.Google Scholar
  14. Guns, R., & Rousseau, R. (2009). Real and rational variants of the h-index and the g-index. Journal of Informetrics, 3(1): 64–71. doi: 10.1016/j.joi.2008.11.004.CrossRefGoogle Scholar
  15. Hirsch, J. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102, 16569–16572.Google Scholar
  16. Jin, B., Liang, L., Rousseau, R., & Egghe, L. (2007). The R- and AR-indices: Complementing the h-index. Chinese Science Bulletin, 52(6), 855–863. doi: 10.1007/s11434-007-0145-9.CrossRefGoogle Scholar
  17. Katsaros, D., Sidiropoulos, A., & Manopoulos, Y. (2007). Age decaying h-index for social network of citations. In SAW proceedings of the BIS 2007 workshop on social aspects of the web, Poznan, Poland, April 27, 2007, CEUR workshop proceedings. 245.Google Scholar
  18. Kräutler, V. (2006). The Google pagerank algorithm in 126 lines of Python.
  19. Ma, N., Guan, J., & Zhao, Y. (2008). Bringing pagerank to the citation analysis. Information Processing and Management, 44(2): 800–810. doi: 10.1016/j.ipm.2007.06.006.CrossRefGoogle Scholar
  20. Rousseau, R. (1987). The Gozinto theorem: Using citations to determine influences on a scientific publication. Scientometrics, 11(3–4): 217–229.CrossRefGoogle Scholar
  21. Sidiropoulos, A., Katsaros, D., & Manolopoulos, Y. (2007). Generalized hirsch h-index for disclosing latent facts in citation networks. Scientometrics, 72(2), 253–280 doi: 10.1007/s11192-007-1722-z.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2010

Authors and Affiliations

  • Eleni Fragkiadaki
    • 1
  • Georgios Evangelidis
    • 1
  • Nikolaos Samaras
    • 1
  • Dimitris A. Dervos
    • 2
  1. 1.Department of Applied InformaticsUniversity of Macedonia Economic and Social SciencesThessalonikiGreece
  2. 2.Department of Information TechnologyAlexander Technology Educational Institute (ATEI) of ThessalonikiSindosGreece

Personalised recommendations