, Volume 80, Issue 3, pp 797–808 | Cite as

Hierarchical linear models in psychiatry: A bibliometric study

  • Víctor H. Cervantes
  • Ana Cristina Santana
  • Georgina Guilera
  • Juana Gómez-Benito


Development of research methods requires a systematic review of their status. This study focuses on the use of Hierarchical Linear Modeling methods in psychiatric research. Evaluation includes 207 documents published until 2007, included and indexed in the ISI Web of Knowledge databases; analyses focuses on the 194 articles in the sample. Bibliometric methods are used to describe the publications patterns. Results indicate a growing interest in applying the models and an establishment of methods after 2000. Both Lotka’s and Bradford’s distributions are adjusted to the data.


Hierarchical Linear Modeling Bibliometric Indicator Psychiatric Research Productive Journal Bipolar Disorder Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Active State Software Inc. (2008), ActivePerl 5.10.0 Standard Distribution [Computer software]. Vancouver, Canada. Retrieved from
  2. Allardyce, J., Boydell, J. (2006), Review: The wider social environment and schizophrenia. Schizophrenia Bulletin, 32(4): 592–598.CrossRefGoogle Scholar
  3. Aragona, A. (2006), A bibliometric analysis of the current status of psychiatric classification: the DSM model compared to the spectrum and the dimensional diagnosis. Giornale Italiano di Psicopatologia, 12: 342–351.Google Scholar
  4. Braun, T., Glänzel, W., Schubert, A. (2006), A Hirsch-type index for journal. Scientometrics, 69(1): 169–173.CrossRefGoogle Scholar
  5. Bradford, S. C. (1985), Sources of information on specific subjects. Journal of Information Science, 10: 176–180. Original work published in 1934 in Engineering, 137: 85–88.CrossRefGoogle Scholar
  6. Bryk, A. S., Raudenbush, S. W., Hierarchical Linear Models. SAGE Publications, London, 1992.Google Scholar
  7. Clement, S., Singh, S., Burns, T. (2003), Status of bipolar disorder research: bibliometric study. British Journal of Psychiatry, 182: 148–152.CrossRefGoogle Scholar
  8. Drukker, M., Krabbendam, L., Driessen, G., van Os, J. (2006), Social disadvantage and schizophrenia: a combined neighborhood and individual-level analysis. Social Psychiatry and Psychiatric Epidemiology, 41: 595–604.CrossRefGoogle Scholar
  9. Egghe, L. (1986), The dual of Bradford’s law. Journal of the American Society for Information Science, 37(4): 246–255.Google Scholar
  10. Egghe, L. (1990), A note on different Bradford multipliers. Journal of the American Society for Information Science, 41(3): 204–209.CrossRefGoogle Scholar
  11. Egghe, L. (2006), Theory and practice of the g-index. Scientometrics, 69(1): 131–152.CrossRefMathSciNetGoogle Scholar
  12. Glänzel, W. (2003), Bibliometrics as a Research Field: A Course on Theory and Application of Bibliometric Indicators [Course handouts]. Retrieved from: on January 1st, 2008.
  13. Guan, J., Ma, N. (2007), A bibliometric study of China’s semiconductor literature compared with other major Asian countries. Scientometrics, 70(1): 107–124.CrossRefGoogle Scholar
  14. Hedeker, D., Mermelstein, R. (1996), Application of random-effects regression models in relapse research. Addiction, 91(Suppl.): S211–S229.CrossRefGoogle Scholar
  15. Hedeker, D., Mermelstein, R. (2000), Analysis of longitudinal substance use outcomes using ordinal random-effects regression models. Addiction, 95(Suppl. 3): S381–S394.Google Scholar
  16. Hirsch, J. E. (2005), An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Science of the United States of America, 102(46): 16569–16572.CrossRefGoogle Scholar
  17. Leimkuhler, F. F. (1967), The Bradford distribution. Journal of documentation, 23(3): 197–207.CrossRefGoogle Scholar
  18. Lotka, A. J. (1926), The frequency distribution of scientific productivity. Journal of the Washington Academy of Science, 16(12): 317–323.Google Scholar
  19. Loughner, W. (1992), Lotka’s law and the Kolmogorov-Smirnov test: an error in calculation. Journal of the American Society for Information Science, 43(2): 149–150.CrossRefGoogle Scholar
  20. Lyons, K. S., Sayer, A. G. (2005), Using multilevel modeling in caregiving research. Aging & Mental Health, 9(3): 189–195.CrossRefGoogle Scholar
  21. Miettunen, J., Nieminen, P., Isohanni, M. (2002), Statistical methodology in general psychiatric journals. Nordic Journal of Psychiatry, 56(3): 223–228.CrossRefGoogle Scholar
  22. Miettunen, J., Nieminen, P. (2003), The effect of statistical methods and study reporting characteristics on the number of citations: a study of four general psychiatric journals. Scientometrics, 57(3): 377–388.CrossRefGoogle Scholar
  23. Nicholls, P. T. (1986), Empirical validation of Lotka’s law. Information Processing & Management, 22(5): 417–419.CrossRefGoogle Scholar
  24. Nicholls, P. T. (1989), Bibliometric modeling processes and the empirical validity of Lotka’s law. Journal of the American Society for Information Science, 40(6): 379–385.CrossRefGoogle Scholar
  25. Pao, M. L. (1985), Lotka’s law: a testing procedure. Information Processing & Management, 21(4): 305–320.CrossRefGoogle Scholar
  26. Potter, J. (1981), The development of social psychology: consensus, theory and methodology in the British journal of social and clinical psychology. British Journal of Social Psychology, 20(4): 249–258.MathSciNetGoogle Scholar
  27. R Development Core Team, (2008), R: a language and environment for statistical computing [Computer software]. Vienna, Austria. Retrieved from
  28. Saad, D. (2006), Exploring the h-index at the author and journal levels using bibliometric data of productive consumer scholars and business-related journals respectively. Scientometrics, 69(1): 117–120.CrossRefGoogle Scholar
  29. van Os, J., Driessen, G., Gunther, N., Delespaul, P. (2000), Neighborhood variation in incidence of schizophrenia. British Journal of Psychiatry, 176: 243–248.CrossRefGoogle Scholar
  30. van Raan, A. F. J. (2003), The use of bibliometric analysis in research performance assessment and monitoring of interdisciplinary scientific developments. Technikfolgenabschätzung — Theorie und Praxis, 1(12): 20–29.Google Scholar
  31. van Raan, A. F. J. (2006), Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups. Scientometrics, 67(3): 491–502.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2009

Authors and Affiliations

  • Víctor H. Cervantes
    • 1
  • Ana Cristina Santana
    • 1
  • Georgina Guilera
    • 2
  • Juana Gómez-Benito
    • 2
  1. 1.Universidad Nacional de ColombiaBogotá, Distrito CapitalColombia
  2. 2.Universidad de BarcelonaBarcelonaSpain

Personalised recommendations