Advertisement

Scientometrics

, Volume 75, Issue 2, pp 339–356 | Cite as

Mathematical aspects of a new criterion for ranking scientific institutions based on the h-index

  • Alain Molinari
  • Jean-Francois Molinari
Article

Abstract

We develop and discuss the theoretical basis of a new criterion for ranking scientific institutions. Our novel index, which is related to the h-index, provides a metric which removes the size dependence. We discuss its mathematical properties such as merging rules of two sets of papers and analyze the relations between the underlying rank/citation-frequency law and the h-index. The proposed index should be seen as a complement to the h-index, to compare the scientific production of institutions (universities, laboratories or journals) that could be of disparate sizes.

Keywords

Master Curve Physical Review Letter Mathematical Aspect Merging Rule Distinct Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and notes

  1. 1.
    J. E. Hirsch, An index to quantify an individual’s scientific research output, Proc. Nat. Acad. Science, 102 (2005) 16569–16572.CrossRefGoogle Scholar
  2. 2.
    P. Ball, Index aims for fair ranking of scientists, Nature, 436 (2005) 900.CrossRefGoogle Scholar
  3. 3.
    G. Saad, Exploring the h-index at the author and journal levels using bibliometric data of productive consumer scholars and business-related journals respectively, Scientometrics, 69(1) (2006) 117–120.CrossRefGoogle Scholar
  4. 4.
    W. Glänzel, On the h-index — A mathematical approach to a new measure of publication activity and citation impact, Scientometrics, 67(2) (2006) 315–321.CrossRefGoogle Scholar
  5. 5.
    T. Braun, W. Glänzel, A. Schubert, A Hirsch-type index for journals, Scientometrics, 69(1) (2006) 169–173.CrossRefGoogle Scholar
  6. 6.
    L. Egghe, R. Rousseau, An informetric model for the Hirsch-index, Scientometrics, 69(1) (2006) 121–129.CrossRefGoogle Scholar
  7. 7.
    J. F. Molinari, A. Molinari, A new methodology for ranking scientific institutions, Scientometrics, 75(1) (2008) 163–174, see also J. F. Molinari, A. Molinari, Imechanica post, http://www.imechanica.org/node/1031, posted March 13th 2007.CrossRefGoogle Scholar
  8. 8.
    Thomson Scientific, ISI Web of Knowledge, http://portal.isiknowledge.com
  9. 9.
    G. Zipf, Human Behavior and the Principle of Least Effort, Cambridge MA: Addison-Wesley, 1949.Google Scholar
  10. 10.
    A. J. Lotka, The frequency distribution of scientific productivity, Journal of the Washington Academy of Science, 16 (1926) 317–323.Google Scholar
  11. 11.
    M. Sutter, M.G. Kocher, Power laws of research output. Evidence for journals of economics, Scientometrics, 51(2) (2001) 405–414.CrossRefGoogle Scholar
  12. 12.
    R. Bailon-Moreno, E. Jurado-Alameda, R. R. Ruiz-Banos, J. P. Courtial, Bibliometric laws: Empirical flaws of fit, Scientometrics, 63(2) (2005) 209–229.CrossRefGoogle Scholar
  13. 13.
    D. H. Zanette, S. C. Manrubia, Role of intermittency in urban development: a model of large-scale city formation, Physical Review Letters, 79(3) (1997) 0031–9007.CrossRefGoogle Scholar
  14. 14.
    C. Furusawa, K. Kaneko, Zipf’s law in gene expression, Physical Review Letters, 90(8) (2003) 088102-1.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Laboratory of Physics and Mechanics of MaterialsUniversité Paul VerlaineMetzFrance
  2. 2.Laboratory of Mechanics and Technology, Ecole Normale Supérieure de CachanUniversité Paris 6Cachan cedexFrance

Personalised recommendations