Advertisement

Science & Education

, Volume 25, Issue 1–2, pp 165–197 | Cite as

The Notion of Scientific Knowledge in Biology

  • Silvia Morante
  • Giancarlo Rossi
Article

Abstract

The purpose of this work is to reconsider and critically discuss the conceptual foundations of modern biology and bio-sciences in general, and provide an epistemological guideline to help framing the teaching of these disciplines and enhancing the quality of their presentation in High School, Master and Ph.D. courses. After discussing the methodological problems that arise in trying to construct a sensible and useful scientific approach applicable to the study of living systems, we illustrate what are the general requirements that a workable scheme of investigation should meet to comply with the principles of the Galilean method. The amazing success of basic physics, the Galilean science of election, can be traced back to the development of a radically “reductionistic” approach in the interpretation of experiments and a systematic procedure tailored on the paradigm of “falsifiability” aimed at consistently incorporating new information into extended models/theories. The development of bio-sciences seems to fit with neither reductionism (the deeper is the level of description of a biological phenomenon the more difficult looks finding general and simple laws), nor falsifiability (not always experiments provide a yes-or-no answer). Should we conclude that biology is not a science in the Galilean sense? We want to show that this is not so. Rather in the study of living systems, the novel interpretative paradigm of “complexity” has been developed that, without ever conflicting with the basic principles of physics, allows organizing ideas, conceiving new models and understanding the puzzling lack of reproducibility that seems to affect experiments in biology and in other modern areas of investigation. In the delicate task of conveying scientific concepts and principles to students as well as in popularising bio-sciences to a wider audience, it is of the utmost importance for the success of the process of learning to highlight the internal logical consistency of biology and its compliance with the fundamental laws of physics.

Keywords

Living System Spin Glass Nicotinamide Adenine Dinucleotide Random String Before Present 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701.CrossRefGoogle Scholar
  2. Abell, S. K., & Lederman, N. G. (2007). Handbook of research on science education. London: Lawrence Erlbaum Associates Publishers.Google Scholar
  3. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2008). Molecular biology of the cell. New York: Garland Science.Google Scholar
  4. Anderson, R. D. (2007). Teaching the theory of evolution in social, intellectual, and pedagogical context. Science & Education, 91(4), 664–677.CrossRefGoogle Scholar
  5. Atlas Collaboration. (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716(1), 1–29.CrossRefGoogle Scholar
  6. Avise, J. C., & Ayala, F. J. (Eds.). (2007). In the light of evolution: Adaptation and complex design. Washington, DC: National Academy Press.Google Scholar
  7. Ayala, F. J., & Arp, R. (Eds.). (2009). Contemporary debates in philosophy of biology. London: Wiley-Blackwell.Google Scholar
  8. Badii, R., & Politi, A. (1997). Complexity—Hierarchical structure and scaling laws in physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Benedetto, D., Caglioti, E., & Loreto, V. (2002). Language trees and zipping. Physical Review Letters, 88, 0487021-4.CrossRefGoogle Scholar
  10. Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learn: Brain, mind, experience, and school. Washington, DC: National Academies Press.Google Scholar
  11. Berg, B. A., & Neuhaus, T. (1991). Multicanonical algorithms for first order phase transitions. Physics Letters B, 267, 249–253.CrossRefGoogle Scholar
  12. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28, 235–242. http://www.rcsb.org/
  13. Bertelle, C., Duchamp, G. H. E., & Kadri-Dahmani, H. (Eds.). (2009). Complex systems and self-organization modelling. Berlin: Springer.Google Scholar
  14. Brigandt, I. (2013). Explanation in biology: Reduction, pluralism, and explanatory aims. Science & Education, 22(1), 69–91.CrossRefGoogle Scholar
  15. Calaprice, A. (2005). The new quotable Einstein. Princeton: Princeton University Press and Hebrew University of Jerusalem.Google Scholar
  16. Cavalli-Sforza, L. L., Menozzi, P., Piazza, A., & Mountain, J. (1988). Reconstruction of human evolution: Bringing together genetic, archaeological, and linguistic data. Proceedings of the National Academy of Sciences (USA), 85, 6002–6006.CrossRefGoogle Scholar
  17. Cavalli-Sforza, L. L. (2001). Genes, peoples and languages. London: Penguin.Google Scholar
  18. Christian, N., Skupin, A. S., Morante, S., Jansen, K., Rossi, G. C., & Ebenhoeh, O. (2014). Mesoscopic behaviour from microscopic Markov dynamics and its application to calcium release channels. Journal of Theoretical Biology, 343, 102–112.CrossRefGoogle Scholar
  19. CMS Collaboration. (2012). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 716(1), 30–61.CrossRefGoogle Scholar
  20. Davidson, D. (2001). Essays on actions and events (Philosophical Essays of Donald Davidson). Oxford: Clarendon Press.CrossRefGoogle Scholar
  21. Ebach, M. C. (2015). Origins of biogeography. The role of biological classification in early plant and animal geography. Berlin: Springer Science.Google Scholar
  22. Eigen, M. (1973). The origin of biological information. In Mehra, J. (Ed.). The physicist’s conception of nature (p. 594). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  23. Einstein, A. (2002). Induction and Deduction. Collected Papers of Albert Einstein Vol. 7, Document 28. The Berlin Years: Writings, 1918–1921. In Janssen, M., Schulmann, R., Illy, J., Lehner, C., & Kormos Buchwald, D. (Eds.) Princeton: Princeton University Press.Google Scholar
  24. Freitas, R. A, Jr. (1999). Nanomedicine. Georgetown, TX: Landes Bioscience.Google Scholar
  25. Giroux, É. (2014). Risk factor and causality in epidemiology, 179–192. In P. Huneman, G. Lambért, & M. Silberstein (Eds.), Classification, disease and evidence: New essays in the philosophy of medicine. New Yrok: Springer Science & Business Media.Google Scholar
  26. Gray, R. D., & Atkinson, Q. D. (2003). Language-tree divergence times support the Anatolian theory of Indo-European origin. Nature, 426, 435–439.CrossRefGoogle Scholar
  27. Green, M. B., Schwarz, J. H., & Witten, E. (1988). Superstring theory. Cambridge: Cambridge University Press.Google Scholar
  28. Greene, B. (1999). The elegant Universe. New York: W.W. Norton.Google Scholar
  29. Hassard, J., & Dias, V. (2009). The art of teaching Science. New York and London: Routledge, Taylor & Francis Group.Google Scholar
  30. Heinrich, R., & Rapoport, T. A. (2005). Generation of nonidentical compartments in vesicular transport systems. The Journal of Cell Biology, 168(2), 271–280.CrossRefGoogle Scholar
  31. Herr, N. (2007). The sourcebook for teaching science. San Francisco, CA: Jossey-Bass, Wiley.Google Scholar
  32. Hodge, T., Jaimie, M., & Cope, T. V. (2000). A myosin family tree. Journal of Cell Science, 113(19), 33533354.Google Scholar
  33. Kampourakis, K. (2013a). The philosophy of biology: A companion for educators. New York: Springer Science & Business Media.CrossRefGoogle Scholar
  34. Kampourakis, K. (2013b). Philosophical considerations in the teaching of biology: Introduction to Part I: Philosophy of biology and biological explanation. Science & Education, 22(1), 1–3.CrossRefGoogle Scholar
  35. Kampourakis, K. (2013c). Philosophical considerations in the teaching of biology: Introduction to Part II: Evolution, Development and Genetics. Science & Education, 22(2), 143–147.CrossRefGoogle Scholar
  36. Kampourakis, K., & Zogza, V. (2008). Students’ intuitive explanations of the causes of homologies and adaptations. Science & Education, 17(1), 27–47.CrossRefGoogle Scholar
  37. Karr, J. R., Sanghvi, J. C., Macklin, D. N., Gutschow, M. V., Jacobs, J. M., Bolival, B, Jr, et al. (2012). A whole-cell computational model predicts phenotype from genotype. Cell, 150(2), 389–401.CrossRefGoogle Scholar
  38. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.Google Scholar
  39. La Penna, G., Morante, S., Perico, A., & Rossi, G. C. (2004). Designing generalized statistical ensembles for numerical simulations of biopolymers. The Journal of Chemical Physics, 121, 10725–10741.CrossRefGoogle Scholar
  40. Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39(6), 497–521.CrossRefGoogle Scholar
  41. Love, A. C. (2013). Interdisciplinary lessons for the teaching of biology from the practice of evo-devo. Science & Education, 22(2), 255–278.CrossRefGoogle Scholar
  42. Lowey, S., Lesko, L. M., Rovner, A. S., Hodges, A. R., White, S. L., Low, R. B., et al. (2008). Functional effects of the hypertrophic cardiomyopathy R403Q mutation are different in an alpha- or beta-myosin heavy chain backbone. Journal of Biological Chemistry, 283(29), 20579–20589.CrossRefGoogle Scholar
  43. Medina, M. A. (2013). Systems biology for molecular life sciences and its impact in biomedicine. Cellular and Molecular Life Sciences, 70(6), 1035–1053.CrossRefGoogle Scholar
  44. Mézard, M., Parisi, G., & Virasoro, M. A. (1987). Spin glass theory and beyond. Singapore: World Scientific.Google Scholar
  45. Parisi, G. (1990). A simple model for the immune network. Proceedings of the National Academy of Sciences (USA), 87(1), 429–433.CrossRefGoogle Scholar
  46. Popper, K. (1935). Logik der Forschung. Vienna, Austria: Verlag von Julius Springer.CrossRefGoogle Scholar
  47. Popper, K. (2005). The logic of scientific discovery. London: Taylor & Francis e-Library.Google Scholar
  48. Potochnik, A., & McGill, B. (2012). The limitations of hierarchical organization. Philosophy of Science, 79(1), 120–140.CrossRefGoogle Scholar
  49. Rammal, R., Toulouse, G., & Virasoro, M. A. (1986). Ultrametricity for physicists. Reviews of Modern Physics, 58, 765–788.CrossRefGoogle Scholar
  50. Reydon, T. A. C. (2013). Classifying life, reconstructing history and teaching diversity: Philosophical issues in the teaching of biological systematics and biodiversity. Science & Education, 22(2), 189–220.CrossRefGoogle Scholar
  51. Rutherford, F. J., & Ahlgren, A. (1991). Science for all Americans. Oxford: Oxford University Press.Google Scholar
  52. Shuai, J., Pearson, J. E., Foskett, J. K., Mak, D.-O. D., & Parker, I. (2007). A kinetic model of single and clustered IP3 receptors in the absence of Ca\(^{2+}\) feedback. Biophysical Journal, 93(4), 1151–1162.CrossRefGoogle Scholar
  53. Schwalger, T., & Lindner, B. (2010). Theory for serial correlations of interevent intervals. The European Physical Journal, 187(1), 211–221.Google Scholar
  54. Shoemaker, D. D., Schadt, E. E., Armour, C. D., He, Y. D., Garrett-Engele, P., et al. (2001). Experimental annotation of the human genome using microarray technology. Nature, 409, 922–927.CrossRefGoogle Scholar
  55. Smith, M. U. (2010). Current status of research in teaching and learning evolution: I. Philosophical/epistemological issues. Science & Education, 19, 523–538.CrossRefGoogle Scholar
  56. Smith, M. U. (2010). Current status of research in teaching and learning evolution: II. Pedagogical issues. Science & Education, 19, 539–571.CrossRefGoogle Scholar
  57. Smolin, L., & Susskind, L. (2004). Smolin vs. Susskind: The Anthropic principle. Edge: Edge Institute. http://edge.org/3rd_culture/smolin_susskind04/smolin_susskind.html.
  58. Staver, J. R. (2007). Teaching science. Paris: Unesco International Bureau of Education.Google Scholar
  59. Stove, D. C. (1982). Popper and after: Four modern irrationalists. Oxford: Pergamon Press.Google Scholar
  60. Svoboda, J., & Passmore, C. (2013). The strategies of modeling in biology education. Science & Education, 22(1), 119–142.CrossRefGoogle Scholar
  61. Takacs, P., & Ruse, M. (2013). The current status of the philosophy of biology. Science & Education, 22(1), 5–48.CrossRefGoogle Scholar
  62. van Mil, M. H. W., Boerwinkel, D. J., & Waarlo, A. J. (2013). Modelling molecular mechanisms: A framework of scientific reasoning to construct molecular-level explanations for cellular behaviour. Science & Education, 22(1), 93–118.CrossRefGoogle Scholar
  63. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., et al. (2001). The sequence of the human genome. Science, 291, 1304–1351.CrossRefGoogle Scholar
  64. Weinberg, S. (2000). The quantum theory of fields. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  65. Woese, C. R., Kandler, O., & Wheelis, M. (1990). Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences (USA), 87, 4576–4579.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di Roma “Tor Vergata”RomeItaly
  2. 2.INFN, Sezione di Roma 2RomeItaly
  3. 3.Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche E. FermiRomeItaly

Personalised recommendations