Science & Education

, Volume 23, Issue 6, pp 1361–1380 | Cite as

On the Concept of Energy: Eclecticism and Rationality



In the theory of heat of the first half of the nineteenth century, heat was a substance. Mayer and Joule contradicted this thesis but developed different concepts of heat. Heat was a force for Mayer and a motion for Joule. Both Mayer and Joule determined the mechanical equivalent of heat. This result was, however, justified in accordance with those concepts of heat. Mayer’s characterisation of force reappears in the very common textbook definition ‘energy cannot be created or destroyed but only transformed’ and his theory led to a phenomenological approach to energy. Joule and Thomson’s concept of heat led to a mechanistic approach to energy and to the common definition ‘energy is the capacity of doing work’. One and the same term ‘energy’ subsumed these two approaches. The problematic concept of energy, energy as a substance, appears then as a result of an eclectic development of the concept. Another approach, which appeared in the 1860s, is directly based on the mechanical equivalent of heat and can be characterized by the use of ‘principle of equivalence’ instead of ‘principle of energy conservation’. Unlike the others, this approach, which has been lost, poses no problems with the concept of energy. The problems with the energy concept as to the kind of phenomena dealt with in the present paper can, however, be overcome, as we shall see, in distinguishing between that which comes from experiments and that which is an interpretation of the experimental results within a conceptual framework.


Primary Level Common Definition Friction Experiment Energy Concept Mechanical Equivalent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arons, A. B. (1999). Development of energy concepts in introductory physics courses. American Journal of Physics, 67, 1063–1067.CrossRefGoogle Scholar
  2. Atkins, K. (1986). Physik: die Grundlagen des physikalischen Weltbildes (2nd ed.). German Trans. Berlin, New York: de Gruyter.Google Scholar
  3. Bailin, S. (2002). Critical thinking and science education. Science & Education, 11, 361–375.CrossRefGoogle Scholar
  4. Barbosa, J. P., & Borges, A. T. (2006). O Entendimento dos Estudantes sobre Energia no início do Ensino Médio. Caderno Brasileiro de Ensino de Física, 23, 182–217.Google Scholar
  5. Bauman, R. P. (1992). Physics that textbook writers usually get wrong. Phys Teacher, 30, 264–269.CrossRefGoogle Scholar
  6. Bergmann, L., & Schaefer, C. (1998). Lehrbuch der Experimentalphysik I (11th ed.). Berlin, New York: de Gruyter.Google Scholar
  7. Berthollet, C. L. (1809). Notes sur divers objects. Mémoires de Physique et de Chimie de la Société d’Arcueil. Tome sécond. Paris (Rep. New York, Johnson).Google Scholar
  8. Bevilacqua, F. (1983). The principle of conservation of energy and the history of classical electromagnetic theory. Pavia: La Goliardica Pavese.Google Scholar
  9. Bevilacqua, F. (1993). Helmholtz’ Ueber die Erhaltung der Kraft. In D. Cahan (Ed.), Hermann von Helmholtz and the foundations of the nineteenth-century science (pp. 291–333). Berkeley, Los Angeles: University of California Press.Google Scholar
  10. Böge, A., & Eichler, J. (2002). Physik (9th ed.). Braunschweig, Wiesbaden: Vieweg.Google Scholar
  11. Boltzmann, L. (1896a). Ein Wort der Mathematik an die Energetik. Annalen der Physik, 57, 39–71.CrossRefGoogle Scholar
  12. Boltzmann, L. (1896b). Zur Energetik. Annalen der Physik, 58, 595–598.CrossRefGoogle Scholar
  13. Breger, H. (1982). Die Natur als arbeitende Maschine: Zur Entstehung des Energiebegriffs in der Physik 1840–1850. Frankfurt am Main, NY: Campus Verlag.Google Scholar
  14. Breithaupt, J. (1999). Physics. Brasingstoke: Macmillan.Google Scholar
  15. Bueche, F. (1972). Principles of physics (2nd ed.). New York: Mc Graw Hill.Google Scholar
  16. Bunge, M. (2000). Energy: Between physics and metaphysics. Science & Education, 9, 457–461.CrossRefGoogle Scholar
  17. Caneva, K. L. (1993). Robert Mayer and the conservation of energy. Princeton: Princeton University Press.Google Scholar
  18. Cardwell, D. S. L. (1989). James Joule. A biography. Manchester: Manchester University Press.Google Scholar
  19. Carnot, S. (1824). Réflexions sur la puissance motrice du feu. Paris: Bachelier. (Reimp. Éditions J. Gabay, 1990).Google Scholar
  20. Çengel, Y., & Boles, M. (2002). Thermodynamics. Boston: Mc Graw Hill.Google Scholar
  21. Chalmers, B. (1963). Energy. New York: Academic Press.Google Scholar
  22. Chrisholm, D. (1992). Some energetic thoughts. Phys Educ, 27, 215–220.Google Scholar
  23. Coelho, R. L. (2006). O Conceito de Energia: Passado e Sentido. Rocha Cabral Institute, Opus. Series, Vol. II, Aachen: Shaker Verlag.Google Scholar
  24. Coelho, R. L. (2009). On the concept of energy: How understanding its history can improve physics teaching. Science & Education, 18, 961–983.CrossRefGoogle Scholar
  25. Colding, L. (1856). Nogle Sætninger om Kræfterne. Oversigt over det Kgl Danske Videnskabernes Selskabs Forhandlinger, 8, 1–20.Google Scholar
  26. Colding, L. (1972). Theses Concerning Force. In P. Dahl (Ed.), Ludvig colding and the conservation of energy principle. New York: Johnson Reprint Corporation.Google Scholar
  27. Colladon, D., & Sturm, C. (1828). Ueber die Zusammendrückbarkeit der Flüssigkeiten. Annalen der Physik, 88, 161–197.CrossRefGoogle Scholar
  28. Coopersmith, J. (2010). Energy, the subtle concept: The discovery of Feynman’s blocks from Leibniz to Einstein. Oxford: Oxford University Press.Google Scholar
  29. Cotignola, M. I., Bordogna, C., Punte, G., & Cappannini, O. M. (2002). Difficulties in learning thermodynamic concepts: Are they linked to the historical development of this field? Science & Education, 11(3), 279–291.CrossRefGoogle Scholar
  30. Cutnell, J., & Johnson, K. (1997). Physics. New York: Wiley.Google Scholar
  31. Dahl, P. F. (1963). Colding and the conservation of energy. Centaurus, 8, 174–188.CrossRefGoogle Scholar
  32. Davy, H. (1839 [1799]). The collected papers of sir Humphrey Davy. In J. Davy (Ed.), Early miscellaneous papers (Vol. 2). London: Smith, Elder and CO. Cornhill.Google Scholar
  33. de Berg, K. C. (2008). The concepts of heat and temperature, the problem of determining the content for the construction of an historical case study which is sensitive to nature of science issues and teaching-learning issues. Science & Education, 17, 75–114.CrossRefGoogle Scholar
  34. Descartes, R. (1973 [1644]). Principia Philosophiae, Paris. In Ch. Adam & P. Tannery (Eds.), Oeuvres de Descartes (vol. VIII-1). Paris: J. Vrin.Google Scholar
  35. Doménech, J. L., Gil-Pérez, D., Gras-Marti, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., et al. (2007). Teaching of energy issues, a debate proposal for a global reorientation. Science & Education, 16, 43–64.CrossRefGoogle Scholar
  36. Dransfeld, K., Kienle, P., & Kalvius, G. M. (2001). Physik I: Mechanik und Wärme (9th ed.). München, Wien: Oldenbourg.Google Scholar
  37. Duit, R. (1981). Understanding energy as a conserved quantity—Remarks on the article by R. U. Sexl. European Journal of Science and Education, 3, 291–294.CrossRefGoogle Scholar
  38. Duit, R. (1986). Der Energiebegriff im Physikunterricht. Kiel: IPN, Abt. Didaktik d. Physik.Google Scholar
  39. Duit, R. (1987). Should energy be illustrated as something quasi-material? International Journal of Science Education, 9, 139–145.CrossRefGoogle Scholar
  40. Einstein, A. (1989 [1905]). Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? In Einstein 1989 (pp. 312–315).Google Scholar
  41. Einstein, A. (1989 [1907]). Über die vom Relativitätsprinzip gefordert Trägheit der Energie. In Einstein 1989 (pp. 414–428).Google Scholar
  42. Einstein, A. (1989 [1909]). Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. In Einstein 1989 (pp. 564–583).Google Scholar
  43. Einstein, A. (1989). The collected papers of Albert Einstein. The Swiss years: writings 1900-1909 (Vol. 2). In John Stachel (Ed.). Princeton: Princeton University Press.Google Scholar
  44. Elkana, Y. (1974). Discovery of the conservation of energy. London: Hutchinson.Google Scholar
  45. Feynman, R., Leighton, R. B. & Sand, M. (1966). The Feynman lectures on physics (2nd ed.). London: Addison-Wesley.Google Scholar
  46. Forrester, J. (1975). Chemistry and the conservation of energy: The work of James Prescott Joule. Studies in History and Philosophy of Science, 6, 273–313.CrossRefGoogle Scholar
  47. Fox, R. (1969). James Prescott Joule (1818-1889). In John North (Ed.), Mid-nineteenth-century scientists (pp. 72–103). Oxford: Pergamon Press.Google Scholar
  48. Galilei, G. (1965). Le Opere di Galileo Galilei (Vol. VIII, X). Firenze, G. Barbèra.Google Scholar
  49. Galili, I. (2009). Thought experiments: Determining their meaning. Science & Education, 18, 1–23.CrossRefGoogle Scholar
  50. Galili, I., & Lehavi, Y. (2006). Definitions of physical concepts: A study of physics teachers’ knowledge and views. International Journal of Science Education, 28, 521–541.CrossRefGoogle Scholar
  51. Gehler, J. (1825–1845). Gehlers Physikalisches Wörterbuch (Vol. 1–11). Leipzig: Schwickert.Google Scholar
  52. Guedj, M. (2000). L’émergence du principe de conservation de l’énergie et la construction de la thermodynamique (Diss.). Paris.Google Scholar
  53. Haas, A. (1909). Die Entwicklungsgeschichte des Satzes von der Erhaltung der Kraft. Wien: Hölder.Google Scholar
  54. Haldat. (1807). Recherches sur la chaleur produite par le frottement. Journal de Physique de Chime et d’Histoire Naturelle, 65, 213–222.Google Scholar
  55. Hänsel, H., & Neumann, W. (1993). Physik: Mechanik und Wärme. Heidelberg: Spektrum, Akad. Verl.Google Scholar
  56. Heimann, H. (1974). Helmholtz and Kant: The metaphysical Foundations of Ueber die Erhaltung der Kraft. Studies in History and Philosophy of Science, 5, 205–238.CrossRefGoogle Scholar
  57. Heimann, H. (1976). Mayer’s concept of “Force”: The “Axis” of a new science of physics. Historical Studies in the Physical Sciences, 7, 277–296.CrossRefGoogle Scholar
  58. Hell, B. (1914). Robert Mayer. Kantstudien, 19, 221–248.Google Scholar
  59. Helm, G. (1896). Zur Energetik. Annalen der Physik und Chemie, 57, 646–659.CrossRefGoogle Scholar
  60. Helm, G. (1898). Die Energetik nach der geschichtlichen Entwicklung. Leipzig: Veit & C.Google Scholar
  61. Helmholtz, H. (1882). Wissenschaftliche Abhandlungen I. Leipzig: Barth.Google Scholar
  62. Hertel, P. (2007). Theoretische Physik. Berlin: Springer.Google Scholar
  63. Hertz, H. (1899). The principles of mechanics presented in a new form. English trans. London: Macmillan and Co.Google Scholar
  64. Hicks, N. (1983). Energy is the capacity to do work—or is it? The Physics Teacher, 21, 529–530.CrossRefGoogle Scholar
  65. Hiebert, E. N. (1971). The energetics controversy and the new thermodynamics. In D. H. D. Roller (Ed.), Perspectives in the history of science and technology (pp. 67–86). Norman: University of Oklahoma Press.Google Scholar
  66. Hudson, A., & Nelson, R. (1982). University physics. New York: H. B. Jovanovich.Google Scholar
  67. Iltis, C. (1971). Leibniz and the Vis Viva Controversy. Isis, 62, 21–35.CrossRefGoogle Scholar
  68. Joule, J. P. (1850). On the mechanical equivalent of heat. Philosophical Transactions of the Royal Society of London, 140, 61–82.CrossRefGoogle Scholar
  69. Joule, J. P. (1884). The scientific papers of James Prescott Joule. London: The Physical Society (Reimp. Londres: Dawsons, 1963).Google Scholar
  70. Kalman, C. (2002). Developing critical thinking in undergraduate courses: A philosophical approach. Science & Education, 11, 83–94.CrossRefGoogle Scholar
  71. Kalman, C. (2011). Enhancing students’ conceptual understanding by engaging science text with reflective writing as a hermeneutical circle. Science & Education, 20, 159–172.CrossRefGoogle Scholar
  72. Keller, F. J., Gettys, W. E., & Skove, M. J. (1993). Physics: Classical and modern (2nd ed.). New York: McGraw-Hill.Google Scholar
  73. Kemp, H. R. (1984). The concept of energy without heat and work. Physics Education, 19, 234–240.CrossRefGoogle Scholar
  74. Kuhn, T. S. (1959). Energy conservation as an example of simultaneous discovery. In M. Clagget (Ed.), Critical problems in the history of science (pp. 321–356). Madison: Wisconsin University Press.Google Scholar
  75. Lancor, R. (2012). Using metaphor theory to examine conceptions of energy in biology, chemistry, and physics. Science & Education,. doi: 10.1007/s11191-0129535-8.Google Scholar
  76. Lehrman, R. (1973). Energy is not the ability to do work. American Journal of Physics, 60, 356–365.Google Scholar
  77. Leibniz, G. W. (1686). Brevis Demonstratio erroris memorabilis Cartesii, et aliorum circa legem naturae, secundum quam volunt a Deo eandem semper quantitatem motus conservari, qua et in re mechanica abutuntur. Acta Eruditorum, 161–163, in Leibniz, G. W. (1971). Mathematische Schriften, Vol. VI, C. I. Gerhardt (Ed.), Hildesheim: G. Olms Verlag.Google Scholar
  78. Lindsay, R. (1973). Julius Robert Mayer. Oxford: Pergamon Press.Google Scholar
  79. Lodge, O. (1879). An attempt at a systematic classification of the various forms of energy. Philosophical Magazine, 8, 277–286.CrossRefGoogle Scholar
  80. Lodge, O. (1885). On the identity of energy: In connection with Mr Poynting’s paper on the transfer of energy in an electromagnetic field; and the two fundamental forms of energy. Philosophical Magazine, 19, 482–494.CrossRefGoogle Scholar
  81. Lodge, O. (1893). The foundation of dynamics. In Proceedings of the physical society of London XII (pp. 289–336).Google Scholar
  82. Mach, E. (1896). Principien der Wärmelehre. Historisch-kritisch entwickelt. Leipzig: J. A. Barth.Google Scholar
  83. Malamitsa, K., Kasoutas, M., & Kokkotas, P. (2009). Developing greek primary school students’ critical thinking through an approach of science teaching which incorporates aspects of history of science. Science & Education, 18, 457–468.CrossRefGoogle Scholar
  84. Matthews, M. R. (2009). Teaching the philosophical and worldviews components of science. Science & Education, 18, 697–728.CrossRefGoogle Scholar
  85. Maxwell, J. (1873). Theory of heat (3rd ed.). Connecticut: Greenwood.Google Scholar
  86. Mayer, J. R. (1842). Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie, 42, 233–240.CrossRefGoogle Scholar
  87. Mayer, J. R. (1845). Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel. Heilbronn. (In Mayer, 1978).Google Scholar
  88. Mayer, J. R. (1851). Bemerkungen über das mechanische Aequivalent der Wärme. Heilbronn. (In Mayer 1978).Google Scholar
  89. Mayer, J. R. (1978). Die Mechanik der Wärme: Sämtliche Schriften. In H. P. Münzenmayer & Stadtarchiv Heilbronn (Eds.). Heilbronn: Stadtarchiv Heilbronn.Google Scholar
  90. Mittasch, A. (1940). Julius Robert Mayers Kausalbegriff. Berlin: Springer.CrossRefGoogle Scholar
  91. Müller, J. & Pouillet, C. (1926). Lehrbuch der Physik (Vol. 3, Part I, 11th ed.). Braunschweig: Vieweg.Google Scholar
  92. Muncke, G. W. (1829). Handbuch der Naturlehre I. Winter, Heidelberg: Universitäts-Buchhandlung C.Google Scholar
  93. Muncke, G. W. (1830). Imponderabilien. In Gehler (1825–1845, Vol. 5, Part 2, pp. 765–770).Google Scholar
  94. Nicholls, G., & Ogborn, J. (1993). Dimensions of children’s conceptions of energy. International Journal of Science Education, 15, 73–81.CrossRefGoogle Scholar
  95. Nolting, W. (2002). Theoretische Physik 4 (5th ed.). Wiesbaden: Vieweg.Google Scholar
  96. Ordónez, J. (1996). The story of a non-discovery: Helmholtz and the conservation of energy. In G. Munévar (Ed.), Spanish studies in the philosophy of science (pp. 1–18). Dordrecht: Kluwer.CrossRefGoogle Scholar
  97. Ostwald, W. (1896). Zur Energetik. Annalen der Physik, 58, 154–165.CrossRefGoogle Scholar
  98. Ostwald, W. (1912 [1908]). Die Energie (2nd ed.). Leipzig: J. A. Barth.Google Scholar
  99. Papadouris, N., & Constantinou, C. P. (2011). A philosophically informed proposal on the topic of energy students aged 11–14. Science & Education, 20, 961–979.CrossRefGoogle Scholar
  100. Planck, M. (1896). Gegen die neuere Energetik. Annalen der Physik, 57, 72–78.CrossRefGoogle Scholar
  101. Planck, M. (1921 [1887]). Das Prinzip der Erhaltung der Energie (4th ed.). Leipzig, Berlin: Teubner.Google Scholar
  102. Poincaré, H. (1892). Cours de Physique Mathématique, 3. Thermodynamique, Leçons professés pendant le premier semestre 1888–1889/Paris, J. Blondin.Google Scholar
  103. Poincaré, H. (1897). Les idées de Hertz sur la mécanique. Revue générale des Sciences, VIII, 734–743.Google Scholar
  104. Poynting, J. H. (1884). On the transfer of energy in the electromagnetic field. Philosophical Transactions of the Royal Society, 175, 343–361.CrossRefGoogle Scholar
  105. Preston, T. (1919). The theory of heat (3rd ed.). R. Cotter (Ed.). London: Macmillan.Google Scholar
  106. Rankine, W. (1853). On the general law of the transformation of energy. Philosophical Magazine, 34, 106–117.Google Scholar
  107. Rankine, W. (1855). Outlines of the science of energetics. Edinburgh New Philosophical Journal, 2, 120–141.Google Scholar
  108. Riehl, A. (1900). Robert Mayers Entdeckung und Beweis des Energieprincipes. In C. Sigwart & B. Erdmann (Eds.) Philosophische Abhandlungen. Tubingen, Freiburg i. B. & Leipzig: J.C.B. Mohr.Google Scholar
  109. Rizaki, A., & Kokkotas, P. (2009). The use of history and philosophy of science as a core for a socioconstructivist teaching approach of the concept of energy in primary education. Science & Education,. doi: 10.1007/s11191-009-9213-7.Google Scholar
  110. Rumford, B. C. (1798). An inquiry concerning the Source of the Heat which is excited by Friction. Philosophical Transactions of the Royal Society of London, 88, 80–102.Google Scholar
  111. Rumford, B. C. (1799). An inquiry concerning the weight ascribed to heat. Philosophical Transactions of the Royal Society of London 89, 179–194.Google Scholar
  112. Schirra, N. (1989). Entwicklung des Energiebegriffs und seines Erhaltunskonzepts. Giessen: Justus-Liebig-Universität.Google Scholar
  113. Serway, R. A., & Beichner, R. J. (2000). Physics for scientists and engineers with modern physics (5th ed.). Philadelphia PA: Saunders College Publishing.Google Scholar
  114. Sexl, R. U. (1981). Some observations concerning the teaching of the energy concept. International Journal of Science Education, 3, 285–289.Google Scholar
  115. Smith, C. (1998). The science of energy: A cultural history of energy physics in Victorian Britain. London: The Athlone Press.Google Scholar
  116. Suckow, G. A. (1813). Anfangsgründe der Physik und Chemie nach den neuesten Entdeckungen. Leipzig: Augsburg.Google Scholar
  117. Svedholm, A. M., & Lindeman, M. (2012). Healing, mental energy in the physics classroom: Energy conceptions and trust in complementary and alternative medicine in grade 10–12 students. Science & Education,. doi: 10.1007/s11191-012-9529-6.Google Scholar
  118. Theobald, D. (1966). The concept of energy. London: Spon.Google Scholar
  119. Thomson, W. (1848). On an absolute thermometric scale founded on Carnot’s theory of the motive power of heat. Philosophical Magazine, 33, 313–317.Google Scholar
  120. Thomson, W. (1849). An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments of steam. Transactions of the Royal Society of Edinburgh, 16, 541–574.CrossRefGoogle Scholar
  121. Thomson, W. (1851a). On the dynamical theory of heat; with numerical results deduced from Mr Joule’s Equivalent of a Thermal Unit, and M. Regnault’s Observations on Steam. Transactions of the R. S. of Edinburgh (1853), 20, 261–298.Google Scholar
  122. Thomson, W. (1851b). On the dynamical theory of heat. on the quantities of mechanical energy contained in different states, as to temperature and density. Transactions of the R. S. of Edinburgh (1853), 20, 475–482.Google Scholar
  123. Thomson, W. (1852). On a universal tendency in nature to the dissipation of mechanical energy. Proceedings of the Royol Socity of Edinburgh, 3, 139–142.Google Scholar
  124. Thomson, W. (1884). Mathematical and physical papers II. Cambridge: Cambridge University Press.Google Scholar
  125. Timerding, H. (1925). Robert Mayer und die Entdeckung des Energiegesetzes. Leipzig & Wien: Deuticke.Google Scholar
  126. Tipler, P. (2000). Physik. German Trans. Heidelberg: Spektrum Akad. Verl.Google Scholar
  127. Trumper, R. (1990). Being constructive, an alternative approach to the teaching of the energy concept—Part one. International Journal of Science Education, 12, 343–354.CrossRefGoogle Scholar
  128. Trumper, R. (1991). Being constructive, an alternative approach to the teaching of the energy concept—Part two. International Journal of Science Education, 13, 1–10.CrossRefGoogle Scholar
  129. Verdet, E. (1868–1872). Oeuvres d’É. Verdet, Vol. 7. Prudhon & Violle (eds.). Paris: Masson.Google Scholar
  130. Watts, D. M. (1983). Some alternative views of energy. Physics Education, 18, 213–217.CrossRefGoogle Scholar
  131. Westphal, W. (1970). Physik (25/26th ed.). Berlin: Springer.Google Scholar
  132. Weyrauch, J. (1890). Robert Mayer, der Entdecker des Princips von der Erhaltung der Energie. Stuttgart.Google Scholar
  133. Young, H. & Freedman, R. (2004). Sears and Zemansky’s University Physics (11th ed.). San Francisco: P. Addison-Wesley.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of SciencesUniversity of LisbonLisbonPortugal

Personalised recommendations