Advertisement

Science & Education

, Volume 22, Issue 2, pp 345–374 | Cite as

How to Understand the Gene in the Twenty-First Century?

  • Lia Midori Nascimento Meyer
  • Gilberto Cafezeiro Bomfim
  • Charbel Niño El-Hani
Article

Abstract

It is widely acknowledged in the literature on philosophy of biology and, more recently, among biologists themselves that the gene concept is currently in crisis. This crisis concerns the so-called “classical molecular concept”, according to which a gene is a DNA segment encoding one functional product, which can be either a RNA molecule or a polypeptide. In this paper, we first describe three categories of anomalies that challenge this way of understanding genes. Then, we discuss proposals for revising the gene concept so as to accommodate the increasingly known complexity of genomic architecture and dynamics. Our intention is to provide an informative overview of recent proposals concerning how we should conceive of genes, which are probably not very familiar to many science educators and teachers, but can bring relevant contributions to genetics teaching, in particular, to a more critical treatment of genes and their role in living systems.

Keywords

Gene DNA Unit Crisis Genetic teaching 

Notes

Acknowledgments

We would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and the State of Bahia Foundation for the Support of Research (FAPESB) for graduate studies grants, and the National Council for Scientific and Technological Development (CNPq) and FAPESB for financial support. We also thank CNPq for a grant for productivity in research. We are also indebted to Vanessa Carvalho dos Santos and Leyla Mariane Joaquim for suggestions about the manuscript.

References

  1. Abelson, J., Trotta, C. R., & Li, H. (1998). tRNA splicing. The Journal of Biological Chemistry, 273, 12685–12688.CrossRefGoogle Scholar
  2. Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et al. (2000). Gene ontology: Tool for the unification of biology. Nature Genetics, 25, 25–29.CrossRefGoogle Scholar
  3. Ast, G. (2004). How did alternative splicing evolve? Nature Reviews Genetics, 5, 773–782.CrossRefGoogle Scholar
  4. Atlan, H., & Koppel, M. (1990). The cellular computer DNA: Program or data? Bulletin of Mathematical Biology, 52, 335–348.Google Scholar
  5. Barabási, A. L., & Oltvai, Z. N. (2004). Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics, 5, 101–113.CrossRefGoogle Scholar
  6. Bergandi, D. (1995). “Reductionist Holism”: An oxymoron or a philosophical chimera of E. P. Odum’s systems ecology? Ludus Vitalis: Journal of Philosophy of Life Sciences, III, 145–180.Google Scholar
  7. Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry, 72, 291–336.CrossRefGoogle Scholar
  8. Brosius, J., & Gould, S. J. (1992). On “Genomenclature”: A comprehensive (and respectful) taxonomy for pseudogenes and other “Junk DNA”. Proceedings of the National Academy of Sciences of the United States, 89, 10706–10710.CrossRefGoogle Scholar
  9. Bruni, L. E. (2003). A sign-theoretic approach to biotechnology. Copenhagen: Institute of Molecular Biology, University of Copenhagen. Ph.D. Thesis.Google Scholar
  10. Burian, R. M. (1985). On conceptual change in biology: The case of the gene. In D. J. Depew & B. H. Weber (Eds.), Evolution at a crossroads: The new biology and the new philosophy of science (pp. 21–24). Cambridge, MA: The MIT Press.Google Scholar
  11. Burian, R. M. (2004). Molecular epigenesis, molecular pleiotropy, and molecular gene definitions. History and Philosophy of Life Sciences, 26, 59–80.CrossRefGoogle Scholar
  12. Burian, R. M. (2005). The epistemology of development, evolution and genetics. Cambridge: Cambridge University Press.Google Scholar
  13. Carthew, R. W. (2006). Gene regulation by MicroRNAs. Current Opinion in Genetics and Development, 16, 203–208.CrossRefGoogle Scholar
  14. Cech, T. R., Zaug, A. J., & Grabowski, P. J. (1981). In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell, 27, 487–496.CrossRefGoogle Scholar
  15. Celotto, A., & Graveley, B. (2001). Alternative splicing of the Drosophila DSCAM pre-mRNA is both temporally and spatially regulated. Genetics, 159, 599–608.Google Scholar
  16. Chien, K. R. (2007). MicroRNAs and the tell-tale heart. Nature, 447, 389–390.CrossRefGoogle Scholar
  17. Chong, L., & Ray, L. B. (2002). Whole-istic biology. Science, 295, 1661.CrossRefGoogle Scholar
  18. Claverie, J.-M. (2001). What if there are only 30,000 human genes? Science, 291, 1255–1257.CrossRefGoogle Scholar
  19. Cooper, M. D., & Alder, M. N. (2006). The evolution of adaptive immune systems. Cell, 124, 815–822.CrossRefGoogle Scholar
  20. Coyne, J. A. (2000). The gene is dead: Long live the gene. Nature, 408, 26–27.CrossRefGoogle Scholar
  21. Crick, F. H. (1958). On protein synthesis. Symposium of the Society of Experimental Biology, 12, 138–163.Google Scholar
  22. El-Hani, C. N. (2007). Between the cross and the sword: The crisis of the gene concept. Genetics and Molecular Biology, 30, 297–307.CrossRefGoogle Scholar
  23. El-Hani, C. N., Arnellos, A., & Queiroz, J. (2007). Modeling a semiotic process in the immune system: Signal transduction in B-cell activation. TripleC-Cognition, Communication, Co-operation, 5, 24–36.Google Scholar
  24. El-Hani, C. N., Queiroz, J., & Emmeche, C. (2009). Genes, information, and semiosis. Tartu: Tartu University Press (Tartu Semiotics Library).Google Scholar
  25. Epp, C. D. (1997). Definition of a gene. Nature, 389, 537.CrossRefGoogle Scholar
  26. Falk, R. (1986). What is a gene? Studies in the History and Philosophy of Science, 17, 133–173.CrossRefGoogle Scholar
  27. Falk, R. (2000). The gene—A concept in tension. In P. Beurton, R. Falk, & H.-J. Rheinberger (Eds.), The concept of the gene in development and evolution (pp. 317–348). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Falk, R. (2001). Can the norm of reaction save the gene concept? In R. S. Singh, C. B. Krimbas, D. B. Paul, & J. Beatty (Eds.), Thinking about evolution: Historical, philosophical and political perspectives (pp. 119–140). New York, NY: Cambridge University Press.Google Scholar
  29. Flodin, V. (2009). The necessity of making visible concepts with multiple meanings in science education: The use of the gene concept in a biology textbook. Science & Education, 18, 73–94.CrossRefGoogle Scholar
  30. Fogle, T. (1990). Are genes units of inheritance? Biology and Philosophy, 5, 349–371.CrossRefGoogle Scholar
  31. Fogle, T. (2000). The dissolution of protein coding genes. In P. Beurton, R. Falk, & H.-J. Rheinberger (Eds.), The concept of the gene in development and evolution (pp. 3–25). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Gelbart, W. (1998). Databases in genomic research. Science, 282, 659–661.CrossRefGoogle Scholar
  33. Gericke, N. M., & Hagberg, M. (2007a). Definition of historical models of gene function and their relation to students’ understandings of genetics. Science & Education, 16, 849–881.CrossRefGoogle Scholar
  34. Gericke, N. M., & Hagberg, M. (2007b). The phenomenon of gene function in textbooks for upper secondary school in Sweden—A comparative analysis with historical models of gene function. In Proceedings of the IOSTE International meeting on critical analysis of school science textbooks (pp. 554–563). Hammamet, Tunisia: University of Tunis.Google Scholar
  35. Gericke, N. M., & Hagberg, M. (2010a). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40, 605–623.CrossRefGoogle Scholar
  36. Gericke, N. M., & Hagberg, M. (2010b). Conceptual variation in the depiction of gene function in upper secondary school textbooks. Science & Education, 19, 963–994.CrossRefGoogle Scholar
  37. Gerstein, M. B., Bruce, C., Rozowsky, J. S., Zheng, D., Du, J., Korbel, J. O., et al. (2007). What is a gene, post-ENCODE? History and updated definition. Genome Research, 17, 669–681.CrossRefGoogle Scholar
  38. Giorgi, C., Fatica, A., Nagel, R., & Bozzoni, I. (2001). Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease. The EMBO Journal, 20, 6856–6865.CrossRefGoogle Scholar
  39. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.Google Scholar
  40. Graveley, B. R. (2001). Alternative splicing: Increasing diversity in the proteomic world. Trends in Genetics, 17, 100–107.CrossRefGoogle Scholar
  41. Gray, R. D. (1992). Death of the gene: Developmental systems fight back. In P. E. Griffiths (Ed.), Trees of life: Essays in the philosophy of biology (pp. 165–209). Dordrecht: Kluwer.Google Scholar
  42. Griffiths, P. E., & Neumann-Held, E. (1999). The many faces of the gene. BioScience, 49, 656–662.CrossRefGoogle Scholar
  43. Griffiths, P. E. (2001). Genetic information: A metaphor in search of a theory. Philosophy of Science, 68, 394–403.CrossRefGoogle Scholar
  44. Guimarães, R. C., & Moreira, C. H. C. (2000). O Conceito Sistêmico de Gene—Uma Década Depois. In I. M. L. D’Ottaviano & I. C. Q. Gonzáles (Eds.), Auto-organização: Estudos Interdisciplinares (pp. 249–280). Campinas: UNICAMP.Google Scholar
  45. Hall, B. K. (2001). The gene is not dead, merely orphaned and seeking a home. Evolution and Development, 3, 225–228.CrossRefGoogle Scholar
  46. Hamer, D. H., & Copeland, P. (1994). The science of desire: The search for the gay gene and the biology of behavior. New York, NY: Simon & Schuster.Google Scholar
  47. Hamer, D. H., Hu, S., Magnuson, V. L., Hu, N., & Pattatucci, A. M. L. (1993). A linkage between DNA markers on the X chromosome and male sexual orientation. Science, 261, 321–327.CrossRefGoogle Scholar
  48. Hanson, M. R. (1996). Protein products of incompletely edited transcripts are detected in plant mitochondria. The Plant Cell, 8(1), 1–3.Google Scholar
  49. Hendrickson, D. G., Hogan, D. J., McCullough, H. L., Myers, J. W., Herschlag, D., Ferrell, J. E., et al. (2009). Concordant regulation of translation and mRNA abundance for hundreds of targets of a human MicroRNA. PLoS Biology, 7, e1000238.CrossRefGoogle Scholar
  50. Hilgers, V., Bushati, N., & Cohen, S. M. (2010). Drosophila MicroRNAs 263a/b confer robustness during development by protecting nascent sense organs from apoptosis. PLoS Biology, 8, e1000396.CrossRefGoogle Scholar
  51. Ideker, T., Galitski, T., & Hood, L. (2001). A new approach to decoding life: Systems biology. Annual Review of Genomics and Human Genetics, 2, 343–372.CrossRefGoogle Scholar
  52. International Human Genome Sequencing Consortium. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.CrossRefGoogle Scholar
  53. Joaquim, L. M. (2009). Gene: Questões Epistemológicas, Conceitos Relacionados e Visões de Estudantes de Graduação. Salvador: Graduate Studies Program in History, Philosophy, and Science Teaching, Federal University of Bahia and State University of Feira de Santana. Master’s thesis.Google Scholar
  54. Judson, H. F. (2001). Talking about the genome. Nature, 409, 769.CrossRefGoogle Scholar
  55. Kampa, D., Cheng, J., Kapranov, P., Yamanaka, M., Brubaker, S., Cawley, S., et al. (2004). Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Research, 14, 331–342.CrossRefGoogle Scholar
  56. Karres, J. S., Hilgers, V., Carrera, I., Treisman, J., & Cohen, S. M. (2007). The conserved MicroRNA MiR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila. Cell, 131, 136–145.CrossRefGoogle Scholar
  57. Kay, L. E. (2000). Who wrote the book of life? A history of the genetic code. Stanford, CA: Stanford University Press.Google Scholar
  58. Keller, E. F. (2000). The century of the gene. Cambridge, MA: Harvard University Press.Google Scholar
  59. Keller, E. F. (2005). The century beyond the gene. Journal of Biosciences, 30, 3–10.CrossRefGoogle Scholar
  60. Keller, E. F., & Harel, D. (2007). Beyond the gene. PLoS One, 2, e1231.CrossRefGoogle Scholar
  61. Kendler, K. S. (2005). “A Gene for”: The nature of gene action in psychiatric disorders. American Journal of Psychiatry, 162, 1243–1252.CrossRefGoogle Scholar
  62. Khachane, A. N., & Harrison, P. M. (2009). Assessing the genomic evidence for conserved transcribed pseudogenes under selection. BMC Genomics, 10, 435.CrossRefGoogle Scholar
  63. Kitcher, P. (1982). Genes. British Journal for the Philosophy of Science, 33, 337–359.CrossRefGoogle Scholar
  64. Knight, R. (2007). Reports of the death of the gene are greatly exaggerated. Biology and Philosophy, 22, 293–306.CrossRefGoogle Scholar
  65. Leite, M. (2007). Promessas do Genoma. São Paulo: UNESP.Google Scholar
  66. Levins, R., & Lewontin, R. C. (1985). The dialectical biologist. Cambridge, MA: Harvard University Press.Google Scholar
  67. Lev-Maor, G., Sorek, R., Levanon, E. Y., Paz, N., Eisenberg, E., & Ast, G. (2007). RNA-editing-mediated exon evolution. Genome Biology, 8, R29.CrossRefGoogle Scholar
  68. Lewontin, R. C. (1983). The organism as the subject and object of evolution. Scientia, 118, 63–83.Google Scholar
  69. Lewontin, R. C. (2000). The triple helix: Gene, organism, and environment. Cambridge, MA: Harvard University Press.Google Scholar
  70. Li, M., Wang, I. X., Li, Y., Bruzel, A., Richards, A. L., Toung, J. M., et al. (2011). Widespread RNA and DNA sequence differences in the human transcriptome. Science, 333, 53–58.CrossRefGoogle Scholar
  71. Magen, A., & Ast, G. (2005). The importance of being divisible by three in alternative splicing. Nucleic Acids Research, 33, 5574–5582.CrossRefGoogle Scholar
  72. Magurran, A. (2000). Backseat drivers, review of the century of the gene by E. F. Keller. New York Times Book Reviews, 10 December, p. 26.Google Scholar
  73. Maynard Smith, J. (2000). The Cheshire cat’s DNA. The New York Review of Books, 47, 43–46.Google Scholar
  74. Meyer, L. M. N. (2010). Como Ensinar a Estudantes Universitários de Ciências Biológicas e Ciências da Saúde sobre a Crise do Conceito de Gene? Salvador: Graduate Studies Program in History, Philosophy, and Science Teaching, Federal University of Bahia and State University of Feira de Santana. Master’s thesis.Google Scholar
  75. Morange, M. (2006). Post-genomics, between reduction and emergence. Synthese, 151, 355–360.CrossRefGoogle Scholar
  76. Moss, L. (1992). A kernel of truth? On the reality of a genetic program. PSA, 1, 335–348.Google Scholar
  77. Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 85–97). Cambridge, MA: MIT Press.Google Scholar
  78. Moss, L. (2003a). What genes can’t do. Cambridge, MA: The MIT Press.Google Scholar
  79. Moss, L. (2003b). One, two (too?), many genes? Quarterly Review of Biology, 78, 57–67.CrossRefGoogle Scholar
  80. Moyle, L. (2002). Most ingenious: Troubles and triumphes of a century of genes. Biology and Philosophy, 17, 715–727.CrossRefGoogle Scholar
  81. Murre, C. (2007). Epigenetics of antigen-receptor gene assembly. Current Opinion in Genetics and Development, 17, 415–421.CrossRefGoogle Scholar
  82. Nature. (2005). In pursuit of systems (editorial). Nature, 435, 1.Google Scholar
  83. Neumann-Held, E. (1999). The gene is dead—Long live the gene: Conceptualizing genes the constructionist way. In P. Koslowski (Ed.), Sociobiology and bioeconomics: The theory of evolution in biological and economic thinking (pp. 105–137). Berlin: Springer.CrossRefGoogle Scholar
  84. Neumann-Held, E. (2001). Let’s talk about genes: The process molecular gene concept and its context. In S. Oyama, P. E. Griffiths, & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 69–84). Cambridge, MA: MIT Press.Google Scholar
  85. Nijhout, H. F. (1990). Metaphors and the role of genes in development. BioEssays, 12, 441–446.CrossRefGoogle Scholar
  86. Niwa, R., & Slack, F. J. (2007). The evolution of animal MicroRNA function. Current Opinion in Genetics and Development, 17, 145–150.CrossRefGoogle Scholar
  87. Oyama, S. ([1985]2000). The ontogeny of information: Developmental systems and evolution (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  88. Oyama, S., Griffiths, P. E., & Gray, R. D. (Eds.). (2001). Cycles of contingency: Developmental systems and evolution. Cambridge, MA: The MIT Press.Google Scholar
  89. Pardini, M. I. M. C., & Guimarães, R. C. (1992). A systemic concept of the gene. Genetics and Molecular Biology, 15, 713–721.Google Scholar
  90. Pearson, H. (2006). What is a gene? Nature, 441, 399–401.Google Scholar
  91. Pitombo, M. A., Almeida, A. M. R., & El-Hani, C. N. (2008). Gene concepts in higher education cell and molecular biology textbooks. Science Education International, 19, 219–234.Google Scholar
  92. Pontes, O., & Pikaard, C. S. (2008). siRNA and miRNA processing: New functions for cajal bodies. Current Opinion in Genetics and Development, 18, 197–203.CrossRefGoogle Scholar
  93. Portin, P. (1993). The concept of the gene: Short history and present status. Quarterly Review of Biology, 56, 173–223.Google Scholar
  94. Rheinberger, H.-J. (2000). Gene concepts: Fragments from the perspective of molecular biology. In P. Beurton, R. Falk, & H.-J. Rheinberger (Eds.), The concept of the gene in development and evolution (pp. 219–239). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  95. Riordan, J., Rommens, J., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., et al. (1989). Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science, 245, 1066–1073.CrossRefGoogle Scholar
  96. Rios, R. I. (2004). O Início do Fim do Gene, Resenha de Keller, E. F. O Século do Gene. Ciência Hoje, 34, 72–73.Google Scholar
  97. Santos, V. C., & El-Hani, C. N. (2009). Idéias sobre Genes em Livros Didáticos de Biologia do Ensino Médio publicados no Brasil. Revista Brasileira de Pesquisa em Educação em Ciências, 9(1), a6.Google Scholar
  98. Santos, V. C., Joaquim, L. M., & El-Hani, C. N. (in press). Hybrid Deterministic views about genes in biology textbooks: A key problem in genetics teaching. Science & Education doi: 10.1007/s11191-011-9348-1
  99. Scherrer, K., & Jost, J. (2007a). The gene and the genon concept: A functional and information-theoretic analysis. Molecular System Biology, 3, 1–11.Google Scholar
  100. Scherrer, K., & Jost, J. (2007b). The gene and the genon concept: Coding versus regulation. A conceptual and information-theoretic analysis storage and expression in the light of modern molecular biology. Theory in Biosciences, 126, 65–113.CrossRefGoogle Scholar
  101. Smith, M., & Adkison, L. R. (2010). Updating the model definition of the gene in the modern genomic era with implications for instruction. Science & Education, 19, 1–20.CrossRefGoogle Scholar
  102. Stotz, K., Griffiths, P. E., & Knight, R. (2004). How biologists conceptualize genes: An empirical study. Studies in the History and Philosophy of Biological and Biomedical Sciences, 35, 647–673.CrossRefGoogle Scholar
  103. The ENCODE Project Consortium. (2007). The ENCODE (ENCyclopedia of DNA elements) project. Science, 306, 636–640.CrossRefGoogle Scholar
  104. Turner, W. J. (1995). Homosexuality, type 1: An Xq28 phenomenon. Archives of Sexual Behavior, 24, 109–134.CrossRefGoogle Scholar
  105. Uney, J. B., & Lightman, S. J. (2006). MicroRNAs and osmotic regulation. Proceedings of the National Academy of Sciences of the United States, 103, 15278–15279.CrossRefGoogle Scholar
  106. Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.CrossRefGoogle Scholar
  107. Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291, 1305–1351.CrossRefGoogle Scholar
  108. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological process. Cambridge, MA: Harvard University Press.Google Scholar
  109. Wang, W., Zhang, J., Alvarez, C., Llopart, A., & Long, M. (2000). The origin of the Jingwei gene and the complex modular structure of its parental gene, Yellow Emperor, in Drosophila melanogaster. Molecular Biology and Evolution, 17, 1294–1301.CrossRefGoogle Scholar
  110. Waters, C. K. (1994). Genes made molecular. Philosophy of Science, 61, 163–185.CrossRefGoogle Scholar
  111. Waters, C. K. (2004). What was classical genetics? Studies in the History and Philosophy of Science C, 35, 783–809.CrossRefGoogle Scholar
  112. Weber, M. (2004). Philosophy of experimental biology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  113. Whorf, B. L. (1940). Science and linguistics. Technology Review, 42(229–231), 247–248.Google Scholar
  114. Wilkins, A. S. (2002). Grappling with developmental complexity. BioEssays, 24, 1193–1195.CrossRefGoogle Scholar
  115. Williams, G. C. (1966). Adaptation and natural selection. Princeton, NJ: Princeton University Press.Google Scholar
  116. Wu, L., Fan, J., & Belasco, J. G. (2006). MicroRNAs direct rapid deadenylation of mRNA. Proceedings of the National Academy of Sciences of the United States, 103, 4034–4039.CrossRefGoogle Scholar
  117. Zhang, B., Pan, X., Cobb, G. P., & Anderson, T. A. (2007). MicroRNAs as oncogenes and tumor suppressors. Developmental Biology, 302, 1–12.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lia Midori Nascimento Meyer
    • 1
  • Gilberto Cafezeiro Bomfim
    • 2
  • Charbel Niño El-Hani
    • 2
  1. 1.Department of Biosciences - Campus ItabaianaFederal University of SergipeItabaianaBrazil
  2. 2.Institute of BiologyFederal University of BahiaSalvadorBrazil

Personalised recommendations