Skip to main content

Advertisement

Log in

Integrating Scientific Methods and Knowledge into the Teaching of Newton’s Theory of Gravitation: An Instructional Sequence for Teachers’ and Students’ Nature of Science Education

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The availability of teaching units on the nature of science (NOS) can reinforce classroom instruction in the subject, taking into account the related deficiencies in textbook material and teacher training. We give a sequence of teaching units in which the teaching of Newton’s gravitational theory is used as a basis for reflecting on the fundamental factors that enter into the cognitive and evaluative processes of science, such as creativity, empirical data, theorising, substantiating and modelling tactics. Distinguishing phases in the evolution of a theory (initial conception and formation, testing, scope and limits of the theory) helps show how the importance of these factors varies from phase to phase, while they continue to interact throughout the whole process. Our concept of how to teach NOS is based on the introduction of such special units, containing direct instruction in NOS elements incorporated into curricular science content, thus giving an initial theoretical basis with which epistemological points of other course material can be correlated during the usual classroom teaching of the subject throughout the school year. The sequence is presented in the form of teaching units that can also be used in teachers’ NOS education, extended in this case by more explicit instruction in basic philosophical views of the nature of science and how they relate to and impact on teaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional Praxis: Making the unnatural natural. Science Education, 82(4), 417–436.

    Article  Google Scholar 

  • Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701.

    Article  Google Scholar 

  • Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2005). Utilizing the ‘3P-model’ to characterize the discipline of didactics of science. Science Education, 14, 29–41.

    Article  Google Scholar 

  • Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2009). A research-informed instructional unit to teach the nature of science to pre-service science teachers. Science & Education, 18(9), 1177–1192.

    Article  Google Scholar 

  • Alonso, M. & Finn, E. J. (1988). ‘Physik’, Addison Wesley GmbH, 3. Auflage.

  • Boulos, P. I. (2006). Newton’s path to univeral gravitation: The role of the Pendulum. Science & Education, 15(6), 577–595.

    Article  Google Scholar 

  • Boyd, R. N. (1983). On the current status of the issue of scientific realism. Erkenntnis, 19, 45–90.

    Article  Google Scholar 

  • Boyd, R. N. (1992). Constructivism, realism, and the philosophical method. In J. Earman (Ed.), Inference, explanation and other frustrations, essays in the philosophy of science (pp. 131–198). Berkeley: University of California Press.

    Google Scholar 

  • Brickhouse, N. W. (1989). The teaching of the philosophy of science in secondary classrooms: Case studies of teachers’ personal theories. International Journal of Science Education, 11, 437–449.

    Article  Google Scholar 

  • Bybee, R. (1997). Achieving scientific literacy: From purposes to practices. Heilmann: Portsmouth.

    Google Scholar 

  • Clough, M. P. (1998). Integrating the nature of science with student teaching: Rationales and strategies. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies. Dortrecht: Kluwer.

    Google Scholar 

  • Clough, M. P. (2006). Learners’ responses to the demands of conceptual change: Considerations for effective nature of science instruction. Science & Education, 15(5), 463–494.

    Article  Google Scholar 

  • Clough, M. P., & Olson, J. K. (2008). Teaching and assessing the nature of science: An introduction. Science & Education, 17(2–3), 143–149.

    Article  Google Scholar 

  • Conant, J. B. (1957). Harvard case histories in experimental science. Cambridge: Harvard University Press.

    Google Scholar 

  • Davson-Galle, P. (2008). Why compulsory science education should not include philosophy of science. Science & Education, 17(7), 677–716.

    Article  Google Scholar 

  • De Berg, K. C. (2008). The concept of heat and temperature: The problem of determining the content for the construction of an historical case study which is sensitive to nature of science issues and teachin-learning issues. Science & Education, 17(1), 75–114.

    Article  Google Scholar 

  • De Boer, G. (1991). A history of ideas in science education: Implications for practice. New York: Teachers College Press.

    Google Scholar 

  • Develaki, M. (1998). Die Relevanz der Wissenschaftstheorie für das Physikverstehen und Physiklehren—Ein Beitrag zur Untersuchung der Wissenschaftstheoretischen Ansichten von Physiklehrern und Physikstudenten. Freie Universität Berlin, Unpublished doctoral dissertation.

  • Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7), 725–749.

    Article  Google Scholar 

  • Develaki, M. (2008). Social and ethical dimension of the natural sciences, complex problems of the age, interdisciplinarity, and the contribution of education. Science & Education, 17(8–9), 873–888.

    Article  Google Scholar 

  • Duhem, P. (1978). Ziel und Struktur der physikalischen Theorien. Hamburg: Meiner.

    Google Scholar 

  • Duschl, R. (2000). Making the nature of science explicit. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education: The contribution of research (pp. 187–206). Buckingham: Open University Press.

    Google Scholar 

  • Einstein, A. (1983) ‘Autobiographisches’. In P. A. Schlipp (ed.), Albert Einstein als Philosoph und Naturforscher, Braunschweig.

  • Einstein, A. (1991). Mein weltbild. Frankfurt am Main: Ullstein.

    Google Scholar 

  • Erduran, S., Aduriz Bravo, A., & Mamlok Naaman, R. (2007). Developing epistemologically empowered teachers: Examining the role of philosophy of chemistry in teacher education. Science & Education, 16, 975–989.

    Article  Google Scholar 

  • Feyerabend, P. K. (1981). Probleme des Empirismus. Braunschweig: Vieweg.

    Google Scholar 

  • Ford, M. (2008). Grasp of practice’ as a reasoning resource for inquiry and nature of science understanding. Science & Education, 17(2–3), 147–177.

    Article  Google Scholar 

  • Giere, R. N. (1999). Science without Laws. Chicago, London: University of Chicago Press.

    Google Scholar 

  • Gilbert, J. K., & Boulter, C. J. (2000). Developing models in science education. Dortrecht: Kluwer.

    Google Scholar 

  • Grandy, R. E. (2003). What are models and Why do we need them? Science & Education, 12, 773–777.

    Article  Google Scholar 

  • Grandy, R. E., & Duschl, R. A. (2007). Reconsidering the character and the role of inquiry in school science: Analysis of a conference. Science & Education, 16, 141–166.

    Article  Google Scholar 

  • Halliday, D., & Resnick, R. (1966). Physics (2nd ed.). New York: Wiley.

    Google Scholar 

  • Halloun, I. A. (2004). Modelling theory in science education. Dordrecht: Kluwer.

    Google Scholar 

  • Halloun, I. A. (2007). Mediated modelling in science education. Science & Education, 16, 653–697.

    Article  Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery: An inquiry into the conceptual foundations of science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Heilbron, J. L. (2002). History in science education, with cautionary tales about the agreement of measurement and theory. Science & Education, 11(4), 321–331.

    Article  Google Scholar 

  • Holton, G. (1981). Thematische analyse der wissenschaft. Frankfurt am Main: Suhrkamp Verlag.

    Google Scholar 

  • Höttecke, D. & Riess, F. (2009). Developing and implementing case studies for teaching science with the help of history and philosophy. Framework and critical perspectives on ‘HIPST’- a european approach for the inclusion of history and philosophy in science teaching, Paper presented at the tenth international history, philosophy, and science teaching conference, South Bend, USA, June 24–28.

  • Hume, D. (1982). Eine Untersuchug Über den Menschlichen Verstand, Stutgart.

  • Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science & Education, 84(1), 5–26.

    Article  Google Scholar 

  • Jorgensen, L. M., & Ryan, S. A. (2004). Relativism, values and morals in the new zealand curriculum framework. Science & Education, 13(3), 223–233.

    Article  Google Scholar 

  • Justi, R. S., & Gilbert, J. K. (2003). Teachers views on the nature of models. International Journal of Science Education, 25, 1369–1386.

    Article  Google Scholar 

  • Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders views of nature of science. Journal of Research in Science Teaching, 39(7), 551–578.

    Article  Google Scholar 

  • Klassen, S. (2007). The application of historical narrative in science learning: The atlantic cable story. Science & Education, 16(3–5), 335–352.

    Article  Google Scholar 

  • Klassen, S. (2009). The construction and analysis of a science story: A proposed methodology. Science & Education, 18(3–4), 401–423.

    Article  Google Scholar 

  • Klopfer, L. E., & Cooley, W. W. (1963). The history of science cases for high schools in the development of student understanding of science and scientists. Journal of Research in Science Teaching, 6(1), 87–95.

    Article  Google Scholar 

  • Kuhn, T. S. (1974a). Logik der forschung oder psychologie der wissenschaftlichen arbeit. In I. Lakatos & A. Musgrave (Eds.), Kritik und Erkenntnisfortschritt (pp. 1–23). Braunschweig: Vieweg.

    Google Scholar 

  • Kuhn, T. S. (1974b). Bemerkungen zu meinen Kritikern. In I. Lakatos & A. Musgrave (Eds.), Kritik und Erkenntnisfortschritt (pp. 223–269). Braunschweig: Vieweg.

    Google Scholar 

  • Kuhn, T. S. (1989). Die Struktur wissenschaftlicher Revolutionen (10. Aufl.). Frankfurt am Main: Suhrkamp-Taschenbuch.

    Google Scholar 

  • Kuhn, W. (1990). Ziel und Struktur physikalischer Theorien. Praxis der Naturwissenschaften-Physik, 2(39), 2–9.

    Google Scholar 

  • Kuhn, W. (1994). Physik, Band 2, 11. Braunschweig: Westermann Schulbuchverlag Gmbh.

    Google Scholar 

  • Lakatos, Ι. (1974). Falsifikation und die Methodologie Wissenschaftlicher Forschungsprogramme. In I. Lakatos & A. Musgrave (Eds.), Kritik und Erkenntnisfortschritt (pp. 89–189). Braunschweig: Vieweg.

    Google Scholar 

  • Lawson, A. E. (2004). A reply to allchin’s ‘pseudohistory and pseudoscience. Science & Education, 13(6), 599–605.

    Article  Google Scholar 

  • Lederman, N. G. (1986). Relating teaching behaviour and classroom climate to changes in students’ conceptions of the nature of science. Science Education, 70(1), 3–19.

    Article  Google Scholar 

  • Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331–359.

    Article  Google Scholar 

  • Matthews, M. R. (1994). Science teaching. NewYork: Routledge.

    Google Scholar 

  • Matthews, M. R. (2007). Models in science and in science education: An introduction. Science & Education, 6(7), 647–652.

    Article  Google Scholar 

  • Matthews, M. R., Gauld, C. F., & Stinner, A. (2005). The pendulum. Scientific, historical, philosophical and educational perspectives. Dortrecht: Springer.

    Google Scholar 

  • McComas, W. F. (1998). The principal elements of the nature of science: Dispelling the myths of science. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 53–70). Dortrecht: Kluwer.

    Google Scholar 

  • McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2–3), 249–263.

    Article  Google Scholar 

  • McComas, W. F., Clough, M. P., & Almazroa, H. (1998). The role and character of the nature of science in science education. Science & Education, 7, 511–532.

    Article  Google Scholar 

  • Metz, D., Klassen, S., McMillan, B., Clough, M., & Olson, J. (2007). Building a foundation for the use of historical narratives. Science & Education, 16(3–5), 313–334.

    Article  Google Scholar 

  • Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy. Science Education, 81(4), 405–424.

    Article  Google Scholar 

  • Nersessian, Ν. (2008). Model-based reasoning in scientific practice. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry. Recommendations for research and implementation. Rotterdam: Sense Publishers.

    Google Scholar 

  • Newton, I. (1999). Mathematical principles of natural philosophy. (I. B. Cohen & A. Whitman, Trans.). Berkeley: The University of California Press.

  • Olson, J. K. & Clough, M. P. (2001) ‘Secondary science teachers’ implementation practices following a course emphasizing contextualized and decontextualized nature of science instruction. Paper presented at the 6th International History, Philosophy, and Science Teaching Conference, Denver, CO, November 7–11.

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ‘ideas-about-science’ should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.

    Article  Google Scholar 

  • Pedretti, E. (2003). Teaching science, technology, society and environment (STSE) Education. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education, science and technology education library. Dordrecht: Kluwer.

    Google Scholar 

  • Petridou, E., Psillos, D., Xatzikraniotis, E., & Viiri, J. (2009). Design and development of a microscopic model for polarization. Physics Education, 44(6), 589–598.

    Article  Google Scholar 

  • Popper, K. (1974). Die Normalwissenschaft und ihre Gefahren. In I. Lakatos & A. Musgrave (Eds.), Kritik und Erkenntnisfortschritt (pp. 51–57). Braunschweig: Vieweg.

    Google Scholar 

  • Popper, K. R. (1989). Logik der Forschung, 9. Tübingen: Aufl., Mohr (Siebeck).

    Google Scholar 

  • Rutherford, F. J., Holton, G., & Watson, F. G. (1970). The project physics course. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Ryder, J., & Leach, J. (2008). Teaching about the epistemology of science in upper secondary schools: An analysis of teachers’ classroom talk. Science & Education, 17(2–3), 289–315.

    Article  Google Scholar 

  • Schecker, H., Bethge, T., Breuer, E., von Dwingelo-Lütten, R., Graf, H.-U., Gropengieίer, I., & Langensiepen, B. (1996). Naturwissenschaftlicher unterricht im kontext allgemeiner bildung. In: Der Mathematische und Naturwissenschaftliche Unterricht 49 (1996), 8 (1996), pp 488–492.

  • Seker, H., & Welsh, L. C. (2006). The use of history of mechanics in teaching motion and force units. Science & Education, 15(1), 55–89.

    Article  Google Scholar 

  • Seroglou, F., Koumaras, P., & Tselfes, V. (1998). History of science and instructional design: The case of electromagnetism. Science & Education, 7, 261–280.

    Article  Google Scholar 

  • Sexl, Raab, Streeruwitz (1977). Physik, Teil 3, Verlag Ueberreuter, Wien.

  • Smith, M. U., & Scharmann, L. C. (1999). Defining versus describing the nature of science: A pragmatic analysis for classroom teachers and science educators. Science Education, 83, 493–509.

    Article  Google Scholar 

  • Solomon, J., Duveen, J., & Scot, L. (1992). Teaching about the nature of science through history: Action research in the classroom. Journal of Research in Science Education, 29(4), 409–421.

    Google Scholar 

  • Stegmüller, W. (1971). Das problem der induktion: Humes herausforderung und moderne antworten. In H. Lenk (ed.), Neue aspekte der wissenschaftstheorie. Braunschweig, pp. 13–74.

  • Stinner, A., McMillan, B. A., Metz, D., Jilek, J. M., & Klassen, S. (2003). The renewal of case studies in science education. Science & Education, 12(7), 617–643.

    Article  Google Scholar 

  • Suppe, F. (1977). The structure of scientific theories (2nd ed.). Chicago: University of Illinois Press.

    Google Scholar 

  • Taber, K. S. (2008). Towards a curricular model of the nature of science. Science & Education, 17(2–3), 179–218.

    Article  Google Scholar 

  • University of Hong Kong -Faculty of Education. (2007). (http://learningscience.edu.hku.hk/index.html).

  • Vollmer, G. (1990). Evolutionäre Erkenntnistheorie, 5. Hirzel: Aufl., Stuttgart.

    Google Scholar 

  • Zeidler, D. L., & Sadler, T. D. (2008). Social and ethical issues in science: A prelude to action. Science & Education, 17(8–9), 799–803.

    Article  Google Scholar 

  • Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357–377.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Develaki.

Appendices

Appendix I: Lesson Plans for the Units in the Sequence

Table 1 Outline of lesson plan for unit 1: Topics, aims, and teaching activities
Table 2 Outline of lesson plan for unit 2: Topics, aims, and teaching activities
Table 3 Outline of lesson plan for unit 3: Topics, aims, and teaching activities
Table 4 Outline of lesson plan for unit 4: Topics, aims, and teaching activities

Appendix II: Comprehensive Outline of the Sequence

Table 5 Issues and objectives of the sequence

Rights and permissions

Reprints and permissions

About this article

Cite this article

Develaki, M. Integrating Scientific Methods and Knowledge into the Teaching of Newton’s Theory of Gravitation: An Instructional Sequence for Teachers’ and Students’ Nature of Science Education. Sci & Educ 21, 853–879 (2012). https://doi.org/10.1007/s11191-010-9243-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-010-9243-1

Keywords

Navigation