Science & Education

, Volume 21, Issue 6, pp 853–879 | Cite as

Integrating Scientific Methods and Knowledge into the Teaching of Newton’s Theory of Gravitation: An Instructional Sequence for Teachers’ and Students’ Nature of Science Education

  • Maria Develaki


The availability of teaching units on the nature of science (NOS) can reinforce classroom instruction in the subject, taking into account the related deficiencies in textbook material and teacher training. We give a sequence of teaching units in which the teaching of Newton’s gravitational theory is used as a basis for reflecting on the fundamental factors that enter into the cognitive and evaluative processes of science, such as creativity, empirical data, theorising, substantiating and modelling tactics. Distinguishing phases in the evolution of a theory (initial conception and formation, testing, scope and limits of the theory) helps show how the importance of these factors varies from phase to phase, while they continue to interact throughout the whole process. Our concept of how to teach NOS is based on the introduction of such special units, containing direct instruction in NOS elements incorporated into curricular science content, thus giving an initial theoretical basis with which epistemological points of other course material can be correlated during the usual classroom teaching of the subject throughout the school year. The sequence is presented in the form of teaching units that can also be used in teachers’ NOS education, extended in this case by more explicit instruction in basic philosophical views of the nature of science and how they relate to and impact on teaching.


Science education Philosophy of science Nature of science teaching units Teacher education Physics teaching Newton’s theory of gravitation 


  1. Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional Praxis: Making the unnatural natural. Science Education, 82(4), 417–436.CrossRefGoogle Scholar
  2. Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665–701.CrossRefGoogle Scholar
  3. Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2005). Utilizing the ‘3P-model’ to characterize the discipline of didactics of science. Science Education, 14, 29–41.CrossRefGoogle Scholar
  4. Adúriz-Bravo, A., & Izquierdo-Aymerich, M. (2009). A research-informed instructional unit to teach the nature of science to pre-service science teachers. Science & Education, 18(9), 1177–1192.CrossRefGoogle Scholar
  5. Alonso, M. & Finn, E. J. (1988). ‘Physik’, Addison Wesley GmbH, 3. Auflage.Google Scholar
  6. Boulos, P. I. (2006). Newton’s path to univeral gravitation: The role of the Pendulum. Science & Education, 15(6), 577–595.CrossRefGoogle Scholar
  7. Boyd, R. N. (1983). On the current status of the issue of scientific realism. Erkenntnis, 19, 45–90.CrossRefGoogle Scholar
  8. Boyd, R. N. (1992). Constructivism, realism, and the philosophical method. In J. Earman (Ed.), Inference, explanation and other frustrations, essays in the philosophy of science (pp. 131–198). Berkeley: University of California Press.Google Scholar
  9. Brickhouse, N. W. (1989). The teaching of the philosophy of science in secondary classrooms: Case studies of teachers’ personal theories. International Journal of Science Education, 11, 437–449.CrossRefGoogle Scholar
  10. Bybee, R. (1997). Achieving scientific literacy: From purposes to practices. Heilmann: Portsmouth.Google Scholar
  11. Clough, M. P. (1998). Integrating the nature of science with student teaching: Rationales and strategies. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies. Dortrecht: Kluwer.Google Scholar
  12. Clough, M. P. (2006). Learners’ responses to the demands of conceptual change: Considerations for effective nature of science instruction. Science & Education, 15(5), 463–494.CrossRefGoogle Scholar
  13. Clough, M. P., & Olson, J. K. (2008). Teaching and assessing the nature of science: An introduction. Science & Education, 17(2–3), 143–149.CrossRefGoogle Scholar
  14. Conant, J. B. (1957). Harvard case histories in experimental science. Cambridge: Harvard University Press.Google Scholar
  15. Davson-Galle, P. (2008). Why compulsory science education should not include philosophy of science. Science & Education, 17(7), 677–716.CrossRefGoogle Scholar
  16. De Berg, K. C. (2008). The concept of heat and temperature: The problem of determining the content for the construction of an historical case study which is sensitive to nature of science issues and teachin-learning issues. Science & Education, 17(1), 75–114.CrossRefGoogle Scholar
  17. De Boer, G. (1991). A history of ideas in science education: Implications for practice. New York: Teachers College Press.Google Scholar
  18. Develaki, M. (1998). Die Relevanz der Wissenschaftstheorie für das Physikverstehen und Physiklehren—Ein Beitrag zur Untersuchung der Wissenschaftstheoretischen Ansichten von Physiklehrern und Physikstudenten. Freie Universität Berlin, Unpublished doctoral dissertation.Google Scholar
  19. Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7), 725–749.CrossRefGoogle Scholar
  20. Develaki, M. (2008). Social and ethical dimension of the natural sciences, complex problems of the age, interdisciplinarity, and the contribution of education. Science & Education, 17(8–9), 873–888.CrossRefGoogle Scholar
  21. Duhem, P. (1978). Ziel und Struktur der physikalischen Theorien. Hamburg: Meiner.Google Scholar
  22. Duschl, R. (2000). Making the nature of science explicit. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education: The contribution of research (pp. 187–206). Buckingham: Open University Press.Google Scholar
  23. Einstein, A. (1983) ‘Autobiographisches’. In P. A. Schlipp (ed.), Albert Einstein als Philosoph und Naturforscher, Braunschweig.Google Scholar
  24. Einstein, A. (1991). Mein weltbild. Frankfurt am Main: Ullstein.Google Scholar
  25. Erduran, S., Aduriz Bravo, A., & Mamlok Naaman, R. (2007). Developing epistemologically empowered teachers: Examining the role of philosophy of chemistry in teacher education. Science & Education, 16, 975–989.CrossRefGoogle Scholar
  26. Feyerabend, P. K. (1981). Probleme des Empirismus. Braunschweig: Vieweg.Google Scholar
  27. Ford, M. (2008). Grasp of practice’ as a reasoning resource for inquiry and nature of science understanding. Science & Education, 17(2–3), 147–177.CrossRefGoogle Scholar
  28. Giere, R. N. (1999). Science without Laws. Chicago, London: University of Chicago Press.Google Scholar
  29. Gilbert, J. K., & Boulter, C. J. (2000). Developing models in science education. Dortrecht: Kluwer.Google Scholar
  30. Grandy, R. E. (2003). What are models and Why do we need them? Science & Education, 12, 773–777.CrossRefGoogle Scholar
  31. Grandy, R. E., & Duschl, R. A. (2007). Reconsidering the character and the role of inquiry in school science: Analysis of a conference. Science & Education, 16, 141–166.CrossRefGoogle Scholar
  32. Halliday, D., & Resnick, R. (1966). Physics (2nd ed.). New York: Wiley.Google Scholar
  33. Halloun, I. A. (2004). Modelling theory in science education. Dordrecht: Kluwer.Google Scholar
  34. Halloun, I. A. (2007). Mediated modelling in science education. Science & Education, 16, 653–697.CrossRefGoogle Scholar
  35. Hanson, N. R. (1958). Patterns of discovery: An inquiry into the conceptual foundations of science. Cambridge: Cambridge University Press.Google Scholar
  36. Heilbron, J. L. (2002). History in science education, with cautionary tales about the agreement of measurement and theory. Science & Education, 11(4), 321–331.CrossRefGoogle Scholar
  37. Holton, G. (1981). Thematische analyse der wissenschaft. Frankfurt am Main: Suhrkamp Verlag.Google Scholar
  38. Höttecke, D. & Riess, F. (2009). Developing and implementing case studies for teaching science with the help of history and philosophy. Framework and critical perspectives on ‘HIPST’- a european approach for the inclusion of history and philosophy in science teaching, Paper presented at the tenth international history, philosophy, and science teaching conference, South Bend, USA, June 24–28.Google Scholar
  39. Hume, D. (1982). Eine Untersuchug Über den Menschlichen Verstand, Stutgart.Google Scholar
  40. Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science & Education, 84(1), 5–26.CrossRefGoogle Scholar
  41. Jorgensen, L. M., & Ryan, S. A. (2004). Relativism, values and morals in the new zealand curriculum framework. Science & Education, 13(3), 223–233.CrossRefGoogle Scholar
  42. Justi, R. S., & Gilbert, J. K. (2003). Teachers views on the nature of models. International Journal of Science Education, 25, 1369–1386.CrossRefGoogle Scholar
  43. Khishfe, R., & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders views of nature of science. Journal of Research in Science Teaching, 39(7), 551–578.CrossRefGoogle Scholar
  44. Klassen, S. (2007). The application of historical narrative in science learning: The atlantic cable story. Science & Education, 16(3–5), 335–352.CrossRefGoogle Scholar
  45. Klassen, S. (2009). The construction and analysis of a science story: A proposed methodology. Science & Education, 18(3–4), 401–423.CrossRefGoogle Scholar
  46. Klopfer, L. E., & Cooley, W. W. (1963). The history of science cases for high schools in the development of student understanding of science and scientists. Journal of Research in Science Teaching, 6(1), 87–95.CrossRefGoogle Scholar
  47. Kuhn, T. S. (1974a). Logik der forschung oder psychologie der wissenschaftlichen arbeit. In I. Lakatos & A. Musgrave (Eds.), Kritik und Erkenntnisfortschritt (pp. 1–23). Braunschweig: Vieweg.Google Scholar
  48. Kuhn, T. S. (1974b). Bemerkungen zu meinen Kritikern. In I. Lakatos & A. Musgrave (Eds.), Kritik und Erkenntnisfortschritt (pp. 223–269). Braunschweig: Vieweg.Google Scholar
  49. Kuhn, T. S. (1989). Die Struktur wissenschaftlicher Revolutionen (10. Aufl.). Frankfurt am Main: Suhrkamp-Taschenbuch.Google Scholar
  50. Kuhn, W. (1990). Ziel und Struktur physikalischer Theorien. Praxis der Naturwissenschaften-Physik, 2(39), 2–9.Google Scholar
  51. Kuhn, W. (1994). Physik, Band 2, 11. Braunschweig: Westermann Schulbuchverlag Gmbh.Google Scholar
  52. Lakatos, Ι. (1974). Falsifikation und die Methodologie Wissenschaftlicher Forschungsprogramme. In I. Lakatos & A. Musgrave (Eds.), Kritik und Erkenntnisfortschritt (pp. 89–189). Braunschweig: Vieweg.Google Scholar
  53. Lawson, A. E. (2004). A reply to allchin’s ‘pseudohistory and pseudoscience. Science & Education, 13(6), 599–605.CrossRefGoogle Scholar
  54. Lederman, N. G. (1986). Relating teaching behaviour and classroom climate to changes in students’ conceptions of the nature of science. Science Education, 70(1), 3–19.CrossRefGoogle Scholar
  55. Lederman, N. G. (1992). Students’ and teachers’ conceptions of the nature of science: A review of the research. Journal of Research in Science Teaching, 29(4), 331–359.CrossRefGoogle Scholar
  56. Matthews, M. R. (1994). Science teaching. NewYork: Routledge.Google Scholar
  57. Matthews, M. R. (2007). Models in science and in science education: An introduction. Science & Education, 6(7), 647–652.CrossRefGoogle Scholar
  58. Matthews, M. R., Gauld, C. F., & Stinner, A. (2005). The pendulum. Scientific, historical, philosophical and educational perspectives. Dortrecht: Springer.Google Scholar
  59. McComas, W. F. (1998). The principal elements of the nature of science: Dispelling the myths of science. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 53–70). Dortrecht: Kluwer.Google Scholar
  60. McComas, W. F. (2008). Seeking historical examples to illustrate key aspects of the nature of science. Science & Education, 17(2–3), 249–263.CrossRefGoogle Scholar
  61. McComas, W. F., Clough, M. P., & Almazroa, H. (1998). The role and character of the nature of science in science education. Science & Education, 7, 511–532.CrossRefGoogle Scholar
  62. Metz, D., Klassen, S., McMillan, B., Clough, M., & Olson, J. (2007). Building a foundation for the use of historical narratives. Science & Education, 16(3–5), 313–334.CrossRefGoogle Scholar
  63. Monk, M., & Osborne, J. (1997). Placing the history and philosophy of science on the curriculum: A model for the development of pedagogy. Science Education, 81(4), 405–424.CrossRefGoogle Scholar
  64. Nersessian, Ν. (2008). Model-based reasoning in scientific practice. In R. A. Duschl & R. E. Grandy (Eds.), Teaching scientific inquiry. Recommendations for research and implementation. Rotterdam: Sense Publishers.Google Scholar
  65. Newton, I. (1999). Mathematical principles of natural philosophy. (I. B. Cohen & A. Whitman, Trans.). Berkeley: The University of California Press.Google Scholar
  66. Olson, J. K. & Clough, M. P. (2001) ‘Secondary science teachers’ implementation practices following a course emphasizing contextualized and decontextualized nature of science instruction. Paper presented at the 6th International History, Philosophy, and Science Teaching Conference, Denver, CO, November 7–11.Google Scholar
  67. Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What ‘ideas-about-science’ should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720.CrossRefGoogle Scholar
  68. Pedretti, E. (2003). Teaching science, technology, society and environment (STSE) Education. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education, science and technology education library. Dordrecht: Kluwer.Google Scholar
  69. Petridou, E., Psillos, D., Xatzikraniotis, E., & Viiri, J. (2009). Design and development of a microscopic model for polarization. Physics Education, 44(6), 589–598.CrossRefGoogle Scholar
  70. Popper, K. (1974). Die Normalwissenschaft und ihre Gefahren. In I. Lakatos & A. Musgrave (Eds.), Kritik und Erkenntnisfortschritt (pp. 51–57). Braunschweig: Vieweg.Google Scholar
  71. Popper, K. R. (1989). Logik der Forschung, 9. Tübingen: Aufl., Mohr (Siebeck).Google Scholar
  72. Rutherford, F. J., Holton, G., & Watson, F. G. (1970). The project physics course. New York: Holt, Rinehart and Winston.Google Scholar
  73. Ryder, J., & Leach, J. (2008). Teaching about the epistemology of science in upper secondary schools: An analysis of teachers’ classroom talk. Science & Education, 17(2–3), 289–315.CrossRefGoogle Scholar
  74. Schecker, H., Bethge, T., Breuer, E., von Dwingelo-Lütten, R., Graf, H.-U., Gropengieίer, I., & Langensiepen, B. (1996). Naturwissenschaftlicher unterricht im kontext allgemeiner bildung. In: Der Mathematische und Naturwissenschaftliche Unterricht 49 (1996), 8 (1996), pp 488–492.Google Scholar
  75. Seker, H., & Welsh, L. C. (2006). The use of history of mechanics in teaching motion and force units. Science & Education, 15(1), 55–89.CrossRefGoogle Scholar
  76. Seroglou, F., Koumaras, P., & Tselfes, V. (1998). History of science and instructional design: The case of electromagnetism. Science & Education, 7, 261–280.CrossRefGoogle Scholar
  77. Sexl, Raab, Streeruwitz (1977). Physik, Teil 3, Verlag Ueberreuter, Wien.Google Scholar
  78. Smith, M. U., & Scharmann, L. C. (1999). Defining versus describing the nature of science: A pragmatic analysis for classroom teachers and science educators. Science Education, 83, 493–509.CrossRefGoogle Scholar
  79. Solomon, J., Duveen, J., & Scot, L. (1992). Teaching about the nature of science through history: Action research in the classroom. Journal of Research in Science Education, 29(4), 409–421.Google Scholar
  80. Stegmüller, W. (1971). Das problem der induktion: Humes herausforderung und moderne antworten. In H. Lenk (ed.), Neue aspekte der wissenschaftstheorie. Braunschweig, pp. 13–74.Google Scholar
  81. Stinner, A., McMillan, B. A., Metz, D., Jilek, J. M., & Klassen, S. (2003). The renewal of case studies in science education. Science & Education, 12(7), 617–643.CrossRefGoogle Scholar
  82. Suppe, F. (1977). The structure of scientific theories (2nd ed.). Chicago: University of Illinois Press.Google Scholar
  83. Taber, K. S. (2008). Towards a curricular model of the nature of science. Science & Education, 17(2–3), 179–218.CrossRefGoogle Scholar
  84. University of Hong Kong -Faculty of Education. (2007). (
  85. Vollmer, G. (1990). Evolutionäre Erkenntnistheorie, 5. Hirzel: Aufl., Stuttgart.Google Scholar
  86. Zeidler, D. L., & Sadler, T. D. (2008). Social and ethical issues in science: A prelude to action. Science & Education, 17(8–9), 799–803.CrossRefGoogle Scholar
  87. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research-based framework for socioscientific issues education. Science Education, 89(3), 357–377.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Educational Advice for Secondary Science EducationHellenic Ministry of EducationThessalonikiGreece

Personalised recommendations